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SYMBOLS

Most symbols are defined and used ad hoc in the text. Script capitals
are linear vector spaces, capitals are matrices, except where otherwise
indicated, and vectors are indicated by the superscript (T) or defined as
such. Other symbols appearing routinely are listed below.

( )-1,( )#,( )T inverse, pseudo inverse, and transpose of ( )

M, estimate and error in estimate of ( )

= equivalence symbol

N intersection of two sets

® direct sum of two linear vector spaces

L{ 1} linear vector space spanned by contents of { }
Where a matrix appears, the column space of the matrix is
indicated.

h vector (costate) defining a parameter as a linear

combination of the state variables

¥ parameter (costate) space

3,3, observable and unobservable subspaces of

H matrix whose columns are the costates of a set of
measurements

Hp, Hy, matrices whose columns are bases of y,¥(,

MS mean square value

m(X) data type, given as a scalar function of the state

P,Po,Py posterior, prior, and initial covariances of the state

estimation error

q MS measurement noise for a measurement

Q diagonal matrix of MS measurement noise for a set of
measurements

(H,Q) measurement sequence (the costates and noise matrix of a

set of measurements)
t time

X(t) state vector



{XA (L), tosSt<tg} reference solution of the state equation

x(t) state deviation vector, X(t) - Xa(t)

X state space

Xms Xu observable and unobservable subspaces of X
Xns>Xu matrices whose columns are bases of Xms Xu

w transformed state deviation vector

W,Wo,Wa posterior, prior, and initial covariances of W
y data vector for a set of measurements

o(to,t1) transition matrix of the linear state equation

vi



EQUIVALENT MEASUREMENTS, OBSERVABILITY, AND CALIBRATION
ACCURACY LIMITS IN LINEAR ESTIMATION
Luigi S. Cicolani

Ames Research Center

SUMMARY

Some aspects of the structure of the linear estimation problem are
investigated in this report. 1In the first section, the processing of arbi-
trary sets of measurements is considered. The notion of equivalent sets of
measurements is defined and applied to obtain a unified view of such opera-
tions as data compression, performance analysis, and selective processing of
data.

In the second section, the measurements to be processsed are assumed to
be samplings, obtained at some arbitrary sequence of times, of one or more
given data types or time-varying functions of the unknowns. The properties of
the data types are then common to any sampling. One such property, observ-
ability, is well known. The system is observable to the data types, provided
all unknowns can be determined from some sampling of the data types. Other-
wise, only some lesser number of linear combinations of the unknowns can be
determined and the estimation problem can be reduced to one of estimating this
smaller set of unknowns.

Finally, the physical nature of measurements and estimation is considered
in combination with observability analysis to obtain a theory for the calibra-
tion accuracy limits inherent in estimation problems. All measurements are
comparisons of like physical phenomena and the basis of comparison is made
unique by international definition of physical units. The estimation process
combines measurements in order to compare some physical system, as defined by
a set of unknown state variables, with these physical units. Measurements
separate into comparisons with physical units (calibrations) and comparisons
among unknowns (hence, are nonlinear in the unknowns). If all calibrations are
carried out in an initial set of measurements, as is usually the case, then
the processing of subsequent measurements becomes a comparison of the system
with a set of intermediate physical standards. These standards appear as
unobservable parameters in the problem and the accuracy to which they are
estimated from the initial set of measurements 1s a lower bound, or calibra-
tion accuracy limit, on the accuracy to which the system can be estimated
without performing new calibrations. Intermediate standards for quantities
having composite units, such as velocities, can also be defined from the
elementary standards, and these are applied to examine the estimation of the
speed of light as part of space vehicle orbit estimation problems.



INTRODUCTION

Linear estimation is the problem of computing the best estimate of a set
of unknowns from noisy measurements of linear functions of the unknowns. This
subject has received wide attention in the engineering literature in recent
years and has applications in many fields. A particularly complex example is
the estimation of space vehicle orbits where accuracy requirements have led
to the development of radar station networks capable of generating vast
amounts of data and of sophisticated data processing programs which estimate
many unknowns. In these and other large-order estimation problems, physical
insight is difficult to achieve and there is little theory of a general or
routine nature for analyzing the relations among the basic factors in the
problem and the estimation performance, or for analyzing the causes of such
common difficulties as ill-conditioning of the information provided by the
measurements. Such difficulties are often characteristic of the measurements
themselves, but with the exception of observability (ref. 1), few measurement
characteristics of a general nature have been identified and observability has
itself received limited attention in practice.

This report is concerned with the analysis of measurements and the
relation of measurement characteristics to the resulting estimation perfor-
mance. Past work on such relations has been largely empirical or restricted
to particular problems. For example, in orbit estimation problems one can
simulate the estimation problem and then calculate the effect of various types
of measurements, measurement schedules, orbit geometry, etc., on performance
{(e.g., refs. 2, 3). In several problems, analysis of the equations relating
the data to properly selected orbit parameters has clarified some aspects of
performance and computational procedure for these cases (refs. 4, 5, 6).

The analysis is carried out in the context of the linear estimation
problem, including assumptions of unforced dynamics and uncorrelated gaussian
measurement noise. The first section deals with arbitrary sequences of
measurements. It is found that a group of 'equivalent sequences' can be
derived from the original set of measurements, each of which gives the same
state estimate and performance. Equivalent sequences permit a number of
operations on the data and the processing equations; the measurements can be
compressed to an equivalent sequence of minimum size, certain equivalent
sequences give the performance, and others permit selective processing of
information that can be used to separate the estimation calculations into
independent lower order parts by selectively deleting some information.

The next section deals with characteristics of the data type.
Measurement sequences are not always arbitrary sets of measurements but are
often obtained by sampling one or more data types at some arbitrary sequence
of times. The data type, given as a function of the state, is then a con-
straint on the measurements, and its characteristics influence estimation
performance independent of the particular sample taken and processed. One
such characteristic is observability; that is, the ability to determine the
state from some (non-noisy) sampling of the data type (refs. 1, 7, 8). If the
state is indeterminate from the data type, then unobservable states can be
defined but a part of the state cannot be estimated from any sampling of the



data type. In that case, the order of the data processing equations can be
reduced by the number of independent unobservable states, and a lower bound on
the estimation accuracy obtainable from the data type is given by the initial
estimation errors associated with the unobservable states.

In the third section, a theory of calibration accuracy in estimation
problems is obtained as an application of observability analysis. Estimation
is an exercise in comparing a physical system to internationally defined unit
quantities (meter, kilogram, etc.). In most problems direct comparisons with
these unit quantities are carried out in an initial set of measurements and
the data types are comparisons among functions of the unknowns. The estima-
tion procedure can then be shown to be one of comparing the physical system
to intermediate standards of length, mass, etc. These standards are
unobservable parameters in the problem and their initial estimation accuracies
provide lower bounds on the accuracy achievable by processing any sampling of
the data types. An intermediate standard for velocities derived from the
basic standards is applied to examine estimation of the speed of light as
part of the orbit estimation problem.

BASIC FORMULAS FOR THE LINEAR ESTIMATION PROBLEM

The well-known state estimation procedure reviewed below is based on the
assumptions that (1) the state is governed by unforced dynamics which are
either linear or can be described by equations linearized about a reference
state, and (2) finite sequences of measurements are made, subject to uncorre-
lated gaussian-distributed noise with zero mean, and processed to obtain the
minimum variance estimate of the state.

The state (an n x 1 vector) of a linear system satisfies an equation of
the form

x(t) = F(t)x(t) (1)
Here, F(t) is a known continuous n % n matrix. These are unforced dynamics

so that the time-history of the state is uniquely defined by the initial
conditions x(ty), as is expressed in the usual solution of (1)

x(t) = o(t,to)x(ty) (2)
where o(t,t,) is the transition matrix of the system.

A scalar output of the system is available for sampling during some time
period, [ty,tp], and is assumed given in the form

m(t) = n(t)Tx(t) ty St < tp (3a)
or, alternatively

m(t) = hT(t)x(ty) t

<t <t (3b)
where
h(t) = oT (t,t )i (L)



The vector function {h(t), t; St < tF}, termed the measurement costate
hereafter, is known and continuous, and it defines the output as a linear
combination of the components of the initial state. The state dynamics are
absorbed in the definition of h(t). If more than one scalar output is
available, then additional relations of the form (3) are given.

The data to be processed in order to estimate the state are a (noisy)
sampling of the output at some finite sequence of times, t;, . . ., ty, in
[to, tg]l. These data are related to the state by

yi = hT(tx(ty) + e i=1, ..., N (4)

where {y.} are the actual data and €; 1s the measurement noise, assumed to
be a gaussian distributed random variable with zero mean and known nonzero
MS wvalue, q(tj). The sample times are assumed sufficiently separated for
the noise to be uncorrelated among the measurements. The notation for the
costates, noise variances, and data from any set of measurements is abbrevi-
ated to

Y1
H = [h(ti) . . . h(tn)] Q = [\Q(ti)\] y={ .
™

It will also be convenient to refer to the two matrices, (H, Q), as a
measurement sequence. In the first section of this report, the costates of a
measurement sequence, H, are taken as arbitrary rather than constrained to
samplings of a given output function of the form (3). The second section
considers the effects of introducing such a constraint.

This report deals with the processing of measurements with the sequential
minimum variance equation (ref. 9). Prior measurements are assumed to have

been processed and to have yielded the estimate, X , and covariance matrix

Py = E[Xx (x)7T]

where X is the estimation error x - X. The new estimate and covariance
obtained from processing (H, Q, y) are then

X = PGH[Q + HTP H] "1 (y - HTRT) + %~

(5)

1

+ HQ'HT]7! = p_ - PLHI[Q + HTPOH]_IHTPO

o
l

[P o

The source of the prior estimate and covariance is unspecified here but it is
assumed that P, 1is positive definite.



In many problems as, for example, the orbit determination problem, the
linear system, (1) - (4), is obtained as an approximation of a nonlinear one.
Since consideration is given to the calibration accuracy limits in such
linearized systems in a later section, a brief review of the linearization
procedure is given here.

A nonlinear state equation and scalar output are assumed given in the
form

F(x(v) (6a)
m(X) (6b)

X(t)

m

The output, m(X), and the components of f(X) are assumed defined on the state
space and to have continuous partial derivatives. If more than one output is
available for sampling, additional functions of the form (6b) are given. The
state, X, is an n x 1 vector list of independent quantities which suffice to
define the system. Independence of the state variables means there is no
nontrivial function, g(X(t)), that is zero at all times.

To linearize equations (6), first obtain a reference solution of (6a),
denoted by

{Xpa(t), to St < tg} (7)

This solution is assumed determined as an unbiased estimate of X(t,) from
some set of initial measurements which are arbitrary (not necessarily sam-
plings of (6b)) and sufficient (they can be inverted to solve for X(tg))-.
Define the error in this initial estimate

x(to) = X(to) - Xp(ty)
where X(ty) is the unknown true state at tp; then
E[X(to)] = O (7a)
and the initial covariance
Pp = E[X(to)XT(to)] (7b)

is a (known) positive definite matrix.

To complete the linearization, define the state deviation

x(t) = X(t) - Xp(t) to St < tp



The state deviation is assumed sufficiently '"small" so that it satisfies the
linearized state equation (1), with F(t) given by the gradient of (6a) with
respect to the state variables

f;
F(t) = [gii-i,j =1, ..., %]x “ (8)
At

Here, the subscripts, i, j, denote the components of the vectors f(X) and X,
respectively. Further, the linearized output (eq. (3)) is obtained from the
gradient of equation (6b} by using

B0 = 00Ty g (9

Equation (3) then gives the first-order difference between the output for the
true state and the output for the reference state.

Finally, the estimation procedure is carried out by processing samplings
of the output with equation (5). The processing is begun with the initial
state estimate and covariance given by equations (7a) and (7b). These sam-
plings can be processed in equation (5) in any convenient order - sequentially,
in groups, or all at once. If the processing is done sequentially, then X
and P, in equation (5) refer to the results of processing measurements prior
to the current one.

EQUIVALENT SEQUENCES AND DATA

This section deals with the analysis of measurement sequences and
estimation performance, that is, of equation (5). The restriction of measure-
ment sequences to samplings of one or more data types is not imposed so that
the discussion applies to arbitrary finite sequences. The principal tool in
the analysis is the equivalent sequence and data, that is, any set of measure-
ments and data (possibly fictitious) which, when processed, give the same
state estimate and covariance as the real sequence and data. The equivalent
sequence and data is used in the analysis to compress large sequences into
small equivalent sequences, and to obtain equivalent sequences with special
properties such as those which state the estimation performance and those
which extract information on any specified set of parameters.

The basic quantities used in this section are defined next. A parameter
is any linear combination of the state variables, th, and is specified by a
vector (costate), h, whose components are the constants of combination. If
(H, Q, y) is any finite measurement sequence and the corresponding data vector,
then the columns of H specify the parameters measured by the sequence and
the column space of H 1is called the observable parameter space expressed as

¥, = L{H}



The information matrix for a sequence is
- -1.T

A fictitious sequence, (Hg, Qg), is said to be equivalent to the real sequence,
(H, Q), if they have identical information matrices. That is, if

-1 T _ -1,.T
HEQE HE = HQ "H

The noise matrix, Q> is assumed diagonal here. Both sequences give the same
covariance when processed in equation (5).

If (Hg, Qg ) is equivalent to the real sequence (H, Q) and y is the real
data, then the corresponding equivalent data, Yg» 1s that fictitious data
vector such that (Hg, Qg, yE) yields the same estlmate of the state in
equation (5) as does (H, Q, y).

Equivalent Sequences

Any real sequence can be replaced by a variety of equivalent sequences,
all of which have identical information. For example, the measurement noise
can always be absorbed in the h vectors by defining

H' = nQ /2

Then (H', I) is equivalent to (H, Q). Such sequences with unit mean square
noise are called primary. It is apparent that any square root! of the
information matrix is an equivalent primary sequence.

Sequences equivalent to (H, Q) can consist of r measurements, where T
can be greater or less than the number of measurements in (H, Q). There is
no upper limit, but a lower limit r* exists and is

r* = Rank(H) (10)

An equivalent sequence containing r* measurements is called an equivalent
basis since its costates are a basis of the column space of H.

A series of statements concerning the algebra of equivalent sequences
follows next. Some minor proofs are omitted. The notation (Hp» QA)é (Hg, Qp)
means the two sequences are equivalent. Where primary sequences are involved,
the noise matrix is dropped from this notation.

1The square root of a positive semidefinite matrix, M, refers to any
matrix M; such that MMI =



[1] Equivalent sequences span the same space. If Hp = HB then
L{Hp} = L{Hg}.

[2] Let !HAEHB] be a partitioned primary sequence. If Hpy = He then
[HatHp] = [HciHp].

[3] Suppose [HiHp] = [HgiHp]. Then Hp = Hg if and only if Hp =
These statements are also true for nonprimary sequences.
[4] Every sequence has an equivalent basis.

Note that the information matrix is positive semidefinite. Any square
root of If which has maximal rank is an equivalent primary basis. The
mathematical literature may be consulted for various methods of computing
square roots. One interesting method is described in reference 10 and is
reviewed in appendix A.

[5] Let Hp be any equivalent primary basis of (H, Q). Then Hp is
also an equivalent primary basis if and only if there exists an orthogonal
r* X r* matrix, B, such that

To prove [5], assume, first, that Hp, is an equivalent primary basis of
(H, Q) and is related to Hp by Hp = HgB where B 1is orthogonal. Then
Hp, Hg are equivalent since they yield the same information matrix, whence
Hg is also equivalent to (H, Q). Conversely, assume Hp, Hp, are equivalent
primary bases of (H, Q). Then both are bases of the same subspace, ¥, and
are related by some nonsingular matrix, B, of size r*; Hjy = HgB. Since Hp
and Hg are equivalent, it follows that BBT is the unit matrix, whence B

is orthogonal.

[6] Let Ha, H, be any pair of primary equivalent bases of some
sequence (H ,Q), and let H H, be any subsequences of Hp, HA, respectively.
Then Hp = HB if and only 1f E{HB} = £{HB}

To prove [6], note first, that if Hp = Hé then they span the same space,
(statement [1]). Conversely, suppose L{Hp} = £{HB} Since Hp, HA are

equivalent primary bases, then (statement [5]) they are related by an
orthogonal matrix, B.

t

This equation can be partitioned as



or

t
HB = HBB]- + HRB3

Since Hg, Hy, are both bases of the same space then B3 1is zero. Since B
was orthogonal then, B; is orthogonal and Hg, HB are equivalent
(statement [5]).

As seen in [5], many equivalent basis sequences are available and
several with special properties are discussed in later sections. Basis
sequences compress the original set of measurements to r* measurements
which can be used in the data processing in place of the real sequence.

Equivalent Data

Suppose (Hg, Qg) is any sequence equivalent to the real sequence (H, Q).
The corresponding equivalent data vector, yg, is that fictitious data vector
for which the state estimate, X, obtained from processing (Hg, Qg» yE) in
equation (5), is identical to the estimate obtained from (H, Q, y

The equivalent data are more easily derived from an alternate formula for
the state estimate. Let

[HoiHI,  Q 1! <y°>
H EH s = [~=-t--1, Y = ———
° T 0 | Q T y

that is, (H, QT, ) is the total set of all prior and current measurements.
The minimum varlance estimate of the state from the total set of
measurements is (ref. 9)

-1
[HTQT HT] HTQT Y

This estimate is identical to that given by equation (5). The vector yp is
defined by the condition that the state estimate be unchanged _ when (H Q, ¥)
is replaced by (Hg, Qg, yg) in the above formula. Since HTQT HT is the
total information matrix, which is nonsingular and which is unchanged if any
subsequence is replaced by an equivalent subsequence (statement [2]), then

Yg satisfies

-1

Q | 0 y Q. ' o]}t sy
[ {Hg] [2-—--| (- - [Hoaﬂl[—9—:r——] <—-°—>
0 Qe YE 0.1 Q y



or, after expansion,

-1 -1
HEQg YE T HQ "y

If (Hg, Qg) is an equivalent basis, then there is a unique solution for vy
since every column of H can then be given as a unique linear combination of
the columns of Hg; that is, H can be given as

H = HgM (11)
Substitute this in the preceding equation and premultiply both sides by HEPO
to obtain

Yp = QgMQ 'y (12a)

valid for equivalent basis sequences. The result depends only on the real
sequence and data and is independent of prior measurements. Alternatively,
the numerical pseudo-inverse (ref. 11) of Hg is

# 1., T

P
Hp = (HgHp) Hp

whence the solution for yg can be given as

#..-1
Yg = QgHgHQ 'y (12b)

valid for equivalent basis sequences. The operations HEHE, HEH that appear

in this solution are often physically undefined owing to the physical units
commonly associated with components of h vectors, but the result in equa-
tion (12b) is numerically correct since the physically undefined operations

appear in HgH in cancelling pairs. In fact, the product HEH is the

well-defined matrix M of equation (11).

The Uncorrelated Equivalent Basis Sequence

An uncorrelated equivalent basis of the real sequence (H, Q) is any
primary equivalent basis Hg for which HEPOHE is diagonal. The costates of

such a sequence define a set of parameters
{h?x, j=1, . . ., r*}

whose estimation errors are uncorrelated both before and after (H, Q) is
processed. It is shown that every real sequence has such a basis and it is
usually unique, given the real sequence and prior covariance. Further, the
elements of the diagonal matrix state the performance in reducing the mean
square estimation errors from their prior values specified by P,.

10



[7] The uncorrelated equivalent basis. Every sequence has an
uncorrelated equivalent basis given as follows: Let Hg be any equivalent
basis of (H, Q) and let Py be the prior covariance matrix. Define the
matrix

. §
A = HEPOHE
and let A, B be its eigenvalues and modal matrix. Then the matrix

HEU = HgB

is an uncorrelated equivalent basis of (H, Q) and

T =

Hg Polpy = A
T -1
HEUPHEU = A[I + A]

To prove [7], note that P, is positive definite and symmetric, and
that Hg always exists and is an n x r* matrix of rank r*. Then A is a
positive definite symmetric matrix of size <r*. Let its eigenvalues and modal
matrix be A, B; that is, the columns of B are the eigenvectors of A taken
in the same order as the eigenvalues in the diagonal matrix A. The matrix B
is orthogonal due to the symmetry of A and it then follows from statement {5],
that HgB (i.e., Hgy) and Hg are equivalent primary sequences. Therefore,
HEB is equivalent to (H, Q), is a basis, and makes P, diagonal. Of the
final two equations in statement [7], the first is true by construction of Hgy,
and the second follows readily from equation (5) after (H, Q) is replaced by
its equivalent (Hgy, I), and HEUPHEU is formed.

The r* columns of Hgy are costates which define r* parameters whose
prior estimation errors are mutually uncorrelated and whose posterior errors
are also mutually uncorrelated. This follows since, as a result of
statement [7]

T LT
hiP,hj = hyPhj = 0

for hj, h; any two distinct columns of Hgy. Further, after processing
(H, Q) the MS estimation errors of the parameters defined by Hpy are
reduced by the respective factors {(1 + Ai)-l, i=1, .. ., r*}

The uncorrelated basis is a unique characteristic of a sequence (H, Q),
and the prior covariance, Pg,.

[8] Uniqueness of eigenvalues. Given (H, Q) and P,, the eigenvalues of
the matrix
T

A(HE) = HZP_Hy

are invariant for all primary equivalent bases, Hg, of (H, Q).

11



Noting statement [5], all such matrices, A(Hg), are related by
orthogonal transformations and, therefore, have identical eigenvalues.

[9] Uniqueness of the uncorrelated equivalent basis. Given (H, Q) and
P,, the uncorrelated equivalent basis Hgy defined by [7] has as many unique
columns, except for ordering and sign, as A has distinct eigenvalues.

Distinct eigenvalues are those which appear in A only once. The
occurrence of multiple eigenvalues is accidental so that normally Hpy is
unique except for ordering and sign. To prove [9], let Hg;, Hgp, be distinct
equivalent bases of (H, Q). These are related by some orthogonal matrix C

(statement [5]) so that
A(Hgp) = CTA(Hg,)C

If By and B, are the modal matrices of A(HEI) and A(Hg,), respectively,
then

T T
A = BjCA(Hg,)CB; = B,A(HE,)B,

Therefore, both B, and CB; are modal matrices of A(Hg,). If the eigen-
values A are distinct, the modal matrix of A(Hg,) is unique except for the
signs of its columns. If signs are ignored,

B2 = CB]_
then

Hgyzo = Hg,By = Hg,CBy = HgyBy = Hpyy

that is, the uncorrelated bases obtained from Hg,, Hg, are identical. If A
has an eigenvalue of multiplicity s, the corresponding s eigenvectors can
be any orthogonal basis of the same s-dimensional eigenspace. In that case,
s columns of Hgy; and Hgyp, need not be identical, although they are

equivalent, while the remaining columns are identical.

In the next section, the uncorrelated equivalent basis gives the
performance with which (H, Q) reduces estimation errors.

Observability and Estimation Performance

Performance, in this section, refers to the reduction of MS estimation
errors obtained from processing a sequence. The analysis is based on the
decomposition of the state and costate (dual of X) spaces into subspaces
termed observable and unobservable to the sequence. Estimation errors and the
covariance matrix are similarly decomposed, and the effect of processing the

12



sequence is to reduce only the observable errors, the amount of reduction
being stated by the uncorrelated basis sequence and its eigenvalues.

Decomposition of ¥ and X- The n-dimensional costate space # and
state space X are partitioned into the following subspaces whose definitions
are based on the costates, h, of the measurements to be processed and on the
(nonsingular) prior covariance, P,:

)
Hy = L{H} (13a)
Xy = {x: xTH = 0} (13b)
¥, = {h: HTPoh = 0} (13¢)
Xm = L{PoH} (13d)

The subspace ¥, is the r*-dimensional column space of H - the space
spanned by the measurement costates - and is termed the observable parameter
space. The subspace Xy 1is an (n - r*)-dimensional subspace of X, termed
the unobservable states. These two subspaces are properties of only the
measurement costates and are well known in discussions of observability (e.g.,
ref. 7).

The remaining two subspaces ¥y and Xy are termed the unobservable
parameters and observable states, respectively, and are defined from the prior

covariance as well as the costates of the measurement sequence.

The subspaces defined in equations(13) provide a complete decomposition
of ¥ and X since they satisfy

H

i}
1}

Hy © 3 Wy 0 3G = {0}

Xm @ Xy Xm N Xu = {0}

X

In that case any costate h or state x can be uniquely decomposed into a
sum

h = hy + hy
X = X + X

whose parts are, respectively, in J(,, ¥, or Xy, X,. Further, if Hp, H, are
two matrices whose columns are bases of ¥, ¥, respectively, then related
bases of X, Xy are given by the columns of the matrices

Xm = PoHp, Xu = PoHy (14)
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The decomposition of ¥ and X defined in equations (13) is "orthogonal" in
the sense that the inner products

<h1.hy> = hiP hy
<x1,X9> = x?Palxz

are zero for all pairs (h;, hy) or (xj, Xx) having one member in ¥y (or Xp)
and the other in ¥, (or Xy). For the inner product on ¥, a "distance"

v<h,h>  is, physically, the RMS prior estimation error of the parameter
defined by h. Two costates are orthogonal

<hl ’h2> =0

provided the prior estimation errors of the two parameters defined by h; and
h, are uncorrelated. Thus, the estimation error for any parameter whose
costate is in J#G; is uncorrelated with the estimation error for any parameter
whose costate is in 4#;, including the measured parameters, and, hence, cannot
be reduced by processing the measurements.

The usual inner products, h¥h2, x?xz are often physically undefined in
estimation problems because of the physical units associated with state
variables.

It may be noted that the data are independent of that part of the state
which is in X, and depends only on that part which is in Xp. As noted
earlier, the state can be uniquely decomposed

X = Xp + Xy

and since, by construction, all measurement costates hy are in #C,, we have,
using equation (13b)

T

hp

T
X = hmxm

Reduction of estimation errors- The state estimation error, X, can be
uniquely decomposed into parts in Xy and Xy

% = %p o+ Ry

If, next, Hy, Hy are any bases of J(,, #,, and Xy, Xy are dgfined in
accordance with equation (14), then the prior covariance of x can be given

by

1

Po = Xm[ngon]_lxg + Xu[HEPoHu]- Xg (15)
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or, simply

This equation is an identity obtained by defining the matrices

@
i

HI

{ 1
[Hm | Hu] and VY [Xm ! Xu] = P,0
where 6 and ¥ are n x n nonsingular matrices by construction. Next, form
the identity

- “1p=14-T Tp . T “1yT
Po = Poo8  'PGle 6 P = ¥ o Poe] v

which, after expanding and noting equation (13c), yields equation (15).

Equation (15) gives Py as a sum of two positive semidefinite matrices
of rank r* and n - r*, respectively. This decomposition is unique in that
the two matrices, Pp, P, are independent of the particular bases of i¥(; and
Hy chosen for the construction. Further, it can be verified that these two
matrices are, respectively, the prior covariances of X and Xy.

If (H, Q) is some sequence to be processed and its uncorrelated equiva-
lent basis is now chosen as the basis of #{; used in equation (15), the
following is readily established.

[10] Let Hg,, & be the uncorrelated basis and eigenvalues of (H, Q)
and P,, as defined in statement [7]. Let Hy be any basis of J(;, and
define

Xm PoHEgy

It

T -1,,T
POHu[HuPOHu] HyP,

IH

Py

Then the prior and posterior covariances are

1,T

Xp + Pu

-1 -1, T
Xph [T + A]TTX_ + P

P, = Xph

v
1}

u

The above expansion of P 1is obtained by using statement [7] and equa- .
tion (15) in equation (5). As seen in statement [10], the covariance of X
given by Py, is unreduced by processing (H, Q). The prior covariance of

Xp can be written
T
X.X-
-1,T _ E : it
XmA Xy = »

u’

15



where {X;} are the columns of X here. Thglprocessing reduces each term in
this sum by the respective factors {(1 + Ay) ~, i =1, . . ., r*}.

The performance in estimating any parameter, hIx is defined as

o - hlPh
hTp h

or the ratio of posterior and prior variances of hTX. All values of p are
in (0, 1] and performance is better for smaller values.

A costate, h, can be given as the unique sum of its parts in Hy and ¥,
h = hy + hy = Hgga + hy

where hy has been given in terms of the basis, Hgy, of #. Using state-
ment [10], one obtains for any h

iy -1, ,T
> (@i/A1)(1+2r3) "+ h Pyh

1=1 (16)
T
Y (3/A) + hyPyhy
i=1
where {ai} are the components of a. From (16) it is apparent that
1 1
Sp S for hef, (17)

1 + Apax ST Amin

p =1 for hed(,

The extreme eigenvalues thus give the extremes of performance for parameters
whose costates are in #4; while no reduction of MS estimation error occurs
for parameters with costates in ;. More generally, if h is in neither
subspace (hy and hy are both nontrivial), then performance is in the interval

(1/1 + Mmax, 1).

The uncorrelated basis is equivalent to the real sequence (H, Q) in the
sense that the same estimate and performance would be achieved if the measure-
ments defined by (Hgy, I) were taken instead of the sequence (H, Q). The
eigenvalues {Ai} are the MS signal to noise ratios for the measurements
defined by (Hgy, I) where the signal is the prior estimation error for each
parameter measured by Hgy and the MS noise is 1.0. The eigenvalues depend
on the nature of the prior information, as given by P,, as well as on the
sequence being processed. If Aj >> 1 then the measurement is a good one
relative to the signal and good performance is obtained for the parameter
defined by the corresponding column of Hgy. The converse occurs for those
parameters corresponding to small eigenvalues. If the eigenvalues range from

16



very small to very large then computational difficulties may occur in
processing the sequence. Such difficulties appear to be inherent in many
problems of practical interest, especially in orbit determination. An inter-
esting method of alleviating such difficulties based on the size of
eigenvalues is reported in reference 12.

Influence of the initial covariance on estimation- Equation (5) is used
for sequential estimation, beginning with the initial conditions X, Pp. For
linear systems obtained as approximations of nonlinear ones, it is assumed
that iA is zero and Pp is, in principle, determined from the measurements
used to compute the reference solution of the nonlinear system. However, Pp
is often guessed rather than calculated from the initial measurements. This
can be done if the final estimate is approximately independent of the initial
covariance, which occurs when the information from subsequent measurements is
much greater than the initial information.

The posterior information and estimate from processing (H, Q, y) are
(from eq. (5))

pl = PAl + HQ HT

PHQ 'y

X

The condition, iA = 0, is used in the second equation above. If the
information from (H, Q) is much greater than the initial information

HQ 'HT >»> PAl

Then P, has negligible influence on the estimate

. 1,7y 1,71 -T
%= (HQ 'HD) QY = Ho yp

where (Hg, I, yp) is equivalent to (H, Q, y). This requires that the whole
space be observable to the measurements, H, and if P, is expressed in the
form

-1

Pp

T
= Hg (MMT)H

MM has eigenvalues much less than 1.0.

More generally, if the whole space is not observable then the initial
information can be separated by selecting Hp, H; to be any bases, respec-
tively, of the observable and unobservable subspaces for the measurements, H

1

- T -1,T
Py’ = Hy[HpPpHp] "Ho + I

17



where
T -1
Iy = Hy[H P,H,] HE

The two parts of PAl are the initial information matrices associated,
respectively, with i and #;; and they are independent of the particular
bases chosen for the construction. When Hp is the uncorrelated basis for
(H, Q) and Pp, the posterior covariance becomes

Pt = Hgyl[T + AT'JHL + Ty

If the eigenvalues satisfy the condition that

then

p~l = HgyHly + 1, = HQ 'HT + 1,

R = [1, + HQ 'HT1 HQ Ty

14

The estimation is approximately independent of the initial information
associated with ¥(; but does depend on initial information associated with
¥,. Nevertheless, the estimate, hTX, of any parameter in ¥ is approxi-
mately independent of all initial information. This can be verified if we let
Hp, Hy be, respectively, any equivalent primary bases of (H, Q) and any

square root of Iy, so that
- - |
P = QT Iy = [Hy | oH [ )
J |

Since both h and the measurements H are in ¥, they can be given uniquely
in terms of Hp in the form

h = Hya H = HpM
whence
T

h'% = hTPHQ 'y = alMQ ly

This result is approximately valid for all h in and is independent of
P,. Note that the product, aTM, is independent of the choice of equivalent

primary basis, Hp, used in the construction.
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Secondly, if only some of the eigenvalues are much greater than 1.0 then
the estimate, hlX, is independent of Pp only for those parameters for which
h is in the subspace spanned by the columns of Hgy corresponding to these
eigenvalues.

Finally, this discussion assumes that Pp 1is '"'reasonably'" guessed so
that at least the orders of magnitude of eigenvalues are correct. If some
eigenvalues are small or a subspace is unobservable to the measurements, then
errors in the guessed P, will affect the estimate.

Selective Information Processing

A given measurement sequence has many equivalent bases and one can be
found such that some of its measurements are in any specified subspace of ¥
while the remaining are outside that subspace. Information consisting of
measurements of parameters in the specified subspace can therefore be
separated from the original sequence. This procedure can also be used to
separate the processing equations, (5), into independent lower order parts by
extracting and deleting certain information.

[11] Information separation. Let (H, Q) be any given measurement
sequence and ¥, any given subspace of J#, and let

L{H}

dim (¥ N #y)

¥
k

An equivalent basis sequence of (H, Q) exists having k columns which are a
basis of ¥y N 3.

The proof of [11] in appendix B outlines the computation of the required
equivalent basis; that is, of a partitioned primary basis

([HAM E HR] s I) = (H, Q

in which the k columns of Hpy form a basis of ¥y N Hy while the
remaining r* - k columns, HR, are not in ¥, (r* is the rank of H). The
partitioned equivalent basis generated from [11] separates the information
matrix into the sum

HQ MHT = HpyfHy . + HyHp

The two parts of the sum are unique and have rank k and r* - k, respectively.

The capacity of the original sequence to reduce the estimation errors of
parameters in ¥, is not generally isolated in the extracted measurements,
Hapm. This is seen as follows. The uncorrelated complement space of #Hp is
given by
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- (h: BT -
g = {h: hTP Hy = 0}

where Hp 1is any basis of #p. The space Hp is the set of costates of all
parameters whose prior estimation errors are uncorrelated with the prior
estimation errors of every parameter with costate in #p. The columns of

Hpy are in #p and, if processed, contribute nontrivial error reduction for
parameters with costates in #j. The columns of HR are not in ¥ but, if
processed, also reduce errors for parameters whose costates are in ¥ except
in the special case that the columns of HR are in the complement space, ¥p.

On the other hand, error reduction in #Hg can be prevented by extracting
and processing only the measurements, Hpaym, since these are all in the comple-
ment space of #pg. If this is done, then the posterior estimation errors for
parameters whose costates are in J#4 will remain mutually uncorrelated with
those whose costates are in ¥p.

The preceding remark can be elaborated to separate the processing
equation into two independent lower order parts associated with ¥, and #(g.
This is done by a two-part separation of (H, Q) into

, © = [Hay | He]

Then HR is further separated into

3 1

where HRp 1is a basis of <L{HR} N Hy and Hé is the final remainder with
columns outside both ¥, and Hg. Thus, an equivalent basis of the form

H, Q = ([HAM | Hyg : Hl;:[ ; I)

is obtained. The subspace #j, is unobservable to the measurements Hpg, and
Hp 1is unobservable to Hpy. The remaining measurements Hp contain that
information which causes the posterior estimation errors of parameters with
costates in ¥p to become correlated with those of parameters having costates
in #Hp. Consequently, if Hé is deleted from the data processing then the
calculations (eq. (5)) can be separated into two independent parts of order
dim (@) and n-dim(¥y) which are associated, respectively, with the estimation
of parameters having costates in J# from the measurements Hpy and with the
estimation of parameters having costates in #p from the measurements Hgpp
(see appendix B). This separation is maintained if a series of measurement
sequences is separated and processed in the same way.
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Discussion

Equivalent sequences and data are used here to obtain a reasonably
unified view of many operations that can be applied to the processing of
arbitrary finite sets of measurements. Equivalent sequences and data are any
set of measurements and data (fictitious) which, when processed, give the same
state estimate and covariance as the real sequence and data. An equivalent
basis sequence is one which has the fewest number of measurements possible for
an equivalent sequence, this number being the rank of the measurement costates
of the real sequence. Basis sequences can be determined using statements [4]
and [5] and equation (12). Several equivalent basis sequences with special
properties were derived (e.g., the uncorrelated equivalent basis which can be
used to describe performance, and bases which separate the information into
measurements which are either in or outside of any selected subspace of the
costate space).

Practical applications of these analytical results are not suggested as
this matter is beyond the scope of this report and success is difficult to
predict without computational experimentation. Computational efficiency
might be improved in some problems by compressing the obtained information to
an equivalent basis sequence prior to processing in equation (5). Equivalent
bases similar to the uncorrelated basis are already known in the literature
and applications to treating computationally ill-conditioned problems have
been suggested (ref. 12). Finally, the information separation procedure can
be used when only a few parameters are to be estimated and sufficient informa-
tion on these parameters can be separated from the original sequence and
processed. This procedure can also be used to separate the data processing
equations into independent lower order parts which might prove useful in
problems that separate naturally into nearly uncoupled parts.

In this section the data were analyzed in a context that is, perhaps, too
general to yield much insight into the nature of estimation. In particular,
the measurement sequences are assumed to be arbitrary, but, in practice, mea-
surements are often obtained by sampling one or more data types at some arbi-
trary sequence of times. The data type, given as a time-dependent function of
the state, is then a constraint on the measurements, and its characteristics
are common to any sampling of the data type. For example, some states may be
unobservable to the data types and, therefore, to any sampling. In the next
section some elementary aspects of the analysis of observability for data
types are considered.

DATA TYPES

Measurements considered in this section are restricted to samplings of
one or more known scalar outputs or data types, of the form of equation (3),
at some arbitrary finite sequence of times in an interval [t,,tg]. It is
shown that the state and parameter spaces can be decomposed into subspaces
termed observable and unobservable to these specific data types in a manner
analogous to that given earlier for arbitrary measurement sequences. The
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states which are unobservable to the data types are also unobservable to any
sampling of the data types. If unobservable states occur the estimation
equation (5) can be reduced in order by the dimension of the unobservable
subspace since the problem can be reduced to one of estimating a lower order

observable subsystem.

Observability Characteristics of Data Types

The measurements processed with equation (5) are restricted to samplings
of one or more scalar data types of the form

m(t) = h(t)Tx(t,) ty < t < tg

where the measurement costate {h(t), t, < t < tg} is a known, continuous
vector function. If more than one data type is available for sampling, then
additional vector functions {h;(t), i =1, . . ., k} are given.

The system is said to be completely observable on [t,, tg] provided the
state can be determined from the (noise-free) output {m(t), to < t < tg}
(ref. 7). The system is completely observable on [t,, tg] if, and only if,
the integral

t
M(to,tp) =f " honTt)de

to

is nonsingular or alternatively, if there exists at least one set of n times
in [tg, tp] such that the matrix of measurement costates

[h(tl): L) h(tn)]

is nonsingular.

The elementary definitions and conditions for an observable system are
somewhat more extensive than the above summary (e.g., refs. 1, 7, 8), but for
present purposes the summary suffices. In many practical problems computa-
tions to determine observability are difficult but this subject is beyond the
scope of this paper.

The concern here is with systems that may or may not be observable. If
the data types {hj(t), i =1, . . ., k} are available for sampling then each
data type spans a subspace of

M, = L{hi(t), t, <t < tp} (18)

called its observable parameter space. A basis of this space is given by the
row or column space of the matrix
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Qg!)

t
F

Mj (to,tp) = J. hi(t)h{(t)dt , i=1, ...,k (19)
tO

The observable parameter space for the collection of data types is the direct
sum

Hy =y @ Hp, @ . . L @Iy (20)

which is the space spanned by the collection of bases computed from equa-

tion (19). If ¥ is r-dimensional, then there exists a set of r times in
[to, tg] and corresponding data types such that the corresponding measurement
costates are a basis of J¥G;. Any other sequence spans a space included in ¥,

The unobservable state space is defined from the data types by
Xu = {x: xThj(t) = 0; to<t<tp; i=1, ..., k} (21a)
If a basis, Hy, of # is given then Xy can be determined from
Xq = {x: xTH, = 0} (21b)

An orthogonal decomposition of # and X 1s completed by defining

I}

{h: nTppH = 0} (22a)

iy

Xm = L{PpHp} (22b)

Here, Py, refers to the initial covariance used in the sequential processing.
The matrix, P, results from some sufficient set of initial measurements of
unspecified type, but all subsequent measurements are assumed samplings of the
data types. The subspaces defined in equations (22) are based partly on the
initial statistical properties of the estimation errors as given by Pp, which
specifies those parameters whose initial estimation errors are correlated with
the initial estimation error of any parameter that can subsequently be
measured by sampling the data types.

The subspaces defined by equations (20) to (22) are analogous to those

given by (13) for arbitrary measurement sequences. It is readily verified
that

3 = Hy © 3, and Hy NHy = 0

so that any costate, h, can be given uniquely as a sum
h=hm+hu
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whose parts are, respectively, in #; and ¥;. Similar statements apply to
X> Xm, Xy @and any state x. In addition

dim[Xm]

1
=

dim [3G,]
dim [3, ]

]
=]
i
=

dim{xy]

where n 1is the dimension of the state space. These subspaces are orthogonal
decompositions of # and X in the sense of the inner products

-1
<hy,hy> = hiPyh, and <xj,x,> = x1P, x,
Finally, related bases of the subspaces are given by
Xm = PpHp and Xy = PpH, (23)

where Hy and H; are any bases of d(; and ¥, respectively.

Reduction to an Observable Subsystem

If unobservable states occur then a suitable transformation of the state
space gives the data types in terms of a reduced set of new variables and the
estimation equations (5) are separated into trivial and nontrivial lower
order equations. Only the nontrivial equations need be carried in the com-
putations. To accomplish this, define the partitioned transformation of the

state space
X = [xm ': xu] (24)

in which Xy (r columns) and X; (n ~ r columns) are, respectively, bases of
the subspaces Xy and Xy given by equations (21) and (22). Any state can be
given as a linear combination of the columns of X

X = [Xm:'Xu:]<

This gives x as the sum of two vectors, one each in Xy and Xy. The com-
ponents of wp (r x 1 vector) and w, (n - v x 1 vector) are the components
of x in Xp and X, respectively, for the particular bases of these

subspaces chosen for the transformation, (24).

W
= XpWp + XgWy (25)
wu

The costate of any measurement permitted by the data types is in ¥(;
hence, measurements can be given as
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y = th + e = hTmem + €

so that measurements can be given as linear combinations of the r new
variables of wp and the linear combination is defined by the r x 1 vector,
XEh. Consequently, any measurement sequence and its data (H, Q, y) can be
given as (M, Q, y), where

M = XIH (26)

The initial covariance of w is obtained from the transformation

Th-1 1!
1. T (XmPp " Xp) ! 0
Wao =X PpX = |—-——>-———- P RS (27)
0 ! (X Pp " Xy)
The off-diagonal submatrices are zero since XiP;IXu = 0; that is, the two

subspaces are orthogonal. The nontrivial parts of W, are the initial covar-
iances of wp and wy and are represented hereafter as Wpa and Wya. If any
sequence of measurements and its data (H, Q, y) are now processed and the
resulting posterior covariance P is transformed, one obtains the posterior
covariance of w as

-1 _ _
W + MQ MDY 1 0

and the estimate w is given by

~

-1
i = W aMIQ + MW aMT Yy

w, = 0
Finally, if subsequent batches of measurements are processed sequentially then
the transformation, (24), maintains the separation of the processing equations
at every step

-1 T
Wp = Wyo - WoM[Q+ MW, M1~ MW,
(28)
~ _ T -1 - MTA— ~=
Wn = WpoM[Q + MYW, M] " (y Wp) + Wp
Wu = qu
(29)
Wy = 0
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Here, Wpo and ﬁ& are the prior covariance of ﬁm and estimate of wpy
obtained from processing all earlier measurements, and (M, Q, y) is the
current batch transformed by equation (26). Only equation (28) describing the
r variables wp, need be carried in the computations. These are entirely
analogous to the original processing equations, (5), and are smaller in order
than (5) by the dimension of .

It is usually more convenient to begin with bases of ¥(; and ¥(; and then
obtain Xp and Xy from these bases by using equation (23). If this is done,
then the new variables wp, w, can be written

T -

T -1,.T
wy (HUPAHu) H;x

that is, the new variables are parameters with costates in 44 and ¥ ;. The
basis, Hp, can always be selected so that H%PAHm is the unit r x r matrix.
If this is done then

WmA=I
and M can be computed from
#
M = HH

(This result is established by noting that M = H$PAH = (H$PAHm)H£H = HiH.)
Thus, to carry out the processing with the reduced equations (28), it is
necessary to calculate one matrix, Hi, which is then applied to the costates

of each measurement sequence, H, subsequently processed.

The covariance and estimate of the original state variables, x, is
readily recovered from W, W at any step

]
1]

XWXT = XpWp XD + X W aXe
(30)

>
1]

=
1]
>3

The estimated state is always an element of X, that is, is an observable
state. The covariance is separated in equations (30) into two parts, this
separation being independent of the particular bases of Xy, Xy used in the
transformation. The covariance of Xy, given by

T
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is unreduced from its initial value by processing any measurements obtained
from the data types. Therefore, P; is a lower bound on the MS estimation
errors and, in particular, its diagonal elements are lower bounds on the MS
errors to which the original state variables can be estimated from the data

types.

A potential source of progressive accuracy loss in calculations is
apparent in (30). Assume that Xy 1s nontrivial and that the estimation
calculations are not separated as in (28) and (29). As data are then processed,
the matrix Wp in equations (30) is reduced while Py remains fixed. This
can result in the progressive loss of numerical significance and even the rank
with which XpWpXT is retained in the calculated covariance matrix. The
estimate, X, depends on memxg and not on Py making it subject to progres-
sively larger calculation errors. The removal of unobservable states from the

data processing, as in equation (28), removes this source of calculation
errors.

An example is given in appendix D to illustrate the application of
observability analysis described in this section.

Discussion

The data type refers to a scalar function of time and the initial state
whose sampling at some arbitrary finite set of times in an interval [t,, tg]
provides the measurement sequence used to estimate the state. The data type
is then a constraint on the measurements and all samplings possess common
properties as a result of the constraint.

One such property is observability which refers to the sufficiency of the
data type for determination of the state from some sampling in the interval
[to, tg]l- The observable parameters and unobservable states are defined from
the data type. The initial covariance matrix is introduced and then the
unobservable parameters and observable states can be defined. These four sub-
spaces define an orthogonal decomposition of the parameter and state spaces
and permit separation of the processing equations into trivial and nontrivial
parts associated with estimating the observable and unobservable components of
the state. If the system is not observable to the data type, the problem can
be reduced to one of estimating the lower order observable subsystem.

This section has considered only basic definitions and the immediate
effects of unobservable states in the data processing; it is by no means as
extensive as one expects the analysis of data types eventually to be. It is
possible to distinguish between complete and total observability (ref. 7).

The observable space, #;, is completely observable in [ty, tp] if it is
spanned by the data type during this interval, and is totally observable if

it is spanned during every nontrivial subinterval of [to, tg]. Apparently,
the space spanned by the data type during [to, tgp] is totally observable, pro-
vided the data type can be expanded in a Taylor series on [tgy, tg], and this
is often the case in estimation problems. In addition, only the integral con-
dition for observability has been mentioned, but conditions in terms of
derivatives of the data type costate are also available, by way of the duality
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between controllability and observability, from the results in reference 13
and elsewhere. Computations to determine the space observable to a data type
are difficult at best in many practical problems, but the matter of computa-
tionally efficient methods is beyond the scope of this report. Finally, the
characteristics of the data type which influence performance when all states
are observable are not investigated here.

CALIBRATION ACCURACY LIMITS IN ESTIMATION PROBLEMS

In most estimation problems, calibration measurements are carried out
initially and later measurements are comparisons between unknowns in the prob-
lem and calibrated quantities. It is expected that the accuracy to which the
unknowns can be estimated from such measurements is limited by the accuracy
of the initial calibrations. The existence of accuracy limits in an estima-
tion problem implies the existence of corresponding unobservable states and
parameters and suggests that observability theory can be applied to their
analysis, as is done below in the case of the generally occurring calibration
accuracy limits.

Measurements are comparisons of like physical phenomena, such as two
lengths or two masses. The basis of comparison is made unique by inter-
national definition of unit phenomena of time, length, mass, and temperature
termed the second, meter, kilogram, and degree Celsius.2 For example, the
meter is currently defined to be the distance covered by 1,650,763.73 wave-
lengths of a certain line of a Krypton 86 source under specified conditions

(ref. 14). Estimation problems can be regarded as exercises in comparing
some set of physical phenomena to these internationally defined unit phenomena.

Calibrations are defined here as comparisons of any quantity in the problem
with the unit phenomena (e.g., measuring a distance by counting wavelengths).
With the exception of time, which is sometimes measured with a cesium clock,
the calibrations are usually carried out initially and are excluded from the
data types. In these cases, the accuracy to which the state variables can be
estimated in the international units by sampling the data types is necessarily
limited to the accuracy set by the initial calibrations.

The nature of the calibration accuracy limit is obvious in simple cases.
For example, a length estimated by comparison with a meter stick can even-
tually be estimated, after a series of such independent measurements, with
nearly the accuracy with which the meter stick was originally calibrated. If
the length is compared to five independently calibrated meter sticks then the
unknown length and the lengths of each of the five meter sticks can be esti-
mated to the accuracy of the best initial estimate of length that here, is the
length of all five meter sticks laid end to end, or equivalently, the accuracy
obtained by averaging five independent calibrations of one meter stick.

20ther units are derived from these four (ref. 14). 1In orbit estimation
only time and length units appear.
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In both cases, sampling the data types amounts to a comparison of all
lengths in the problem with an intermediate length standard, the length of the
meter stick in the first case and the sum of the lengths of the five meter
sticks in the second. The estimation accuracy for the intermediate length
standard cannot be improved by sampling the data type. It is unobservable.

Other problems are less obvious since calibrations of varying accuracies
are often buried in the initial estimates of fundamental parameters in the
problem. However, features similar to those described above can be demon-
strated; if the data types are not calibrations, then an independent unobserv-
able state can be shown to exist for each physical unit in the problem. For
each such state a corresponding accuracy limit is obtained, these limits
being the best accuracies to which any length, mass, and temperature in the
problem have been estimated initially. The length, mass, and temperature
which have been estimated initially to these best accuracies are the inter-
mediate standards of length, mass, and temperature. They are the 'meter
sticks" of the problem against which the data types compare other quantities.

Unobservable Calibration States

If the data types are not calibrations, they are comparisons or ratios of
unknown quantities in the problem and, hence, are nonlinear in the unknowns.
Therefore, for the analysis of calibration accuracy the linear system
(eqs. (1) to (3)) is assumed to be obtained by linearizing a nonlinear one
(eq. (6)), using equations (8) and (9) and a reference solution of (6a) given
from some set of initial measurements which include the calibrations.

Suffictent conditions for existence of unobservable states- It is shown,
next, that simple conditions on the nonlinear system suffice for the existence
of unobservable states of the linearized system. These results are applied in
the subsequent analysis of calibration accuracy.

In the following statement, X 1is the n x 1 state vector, and
{Xa(t), to < t < tg} is the reference solution of the nonlinear state equation

used in linearizing the equations. The data types, {mij(X), i =1, . . ., k}
and the components of the state equation

X(t) = E(X(v))

are all assumed defined with continuous partial derivatives on the state space.

[12] Sufficient conditions. Define the diagonal matrices

J=rJi;|, A= | a7t

where {J;, . . ., J,} is a set of integers and A is real and arbitrary. If
there exists a set of integers, {J;, . . ., Jp}, for which
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(1) £(AX) = AF(X)

(2) mj(AX) = m;(X) i=1, .. ., k
for all X and A, then the state
EO =J XA(tO)

is an unobservable (deviation) state of the linearized system.

A detailed proof of statement [12] is given in appendix C. The
conditions of the statement require the data types and the components of
f(X) to be algebraically homogeneous. As will be shown, these conditions are
met if the data types exclude calibrations. Then the integer powers to which
any single physical unit, other than the unit of time, appears in the state
variables are sets of integers that satisfy the conditions of statement [12].
These integers are readily given by inspection of the units of the state
variables. As shown in appendix C, it follows from Euler's theorem for
homogeneous functions that the consequence of the first condition of
statement [12] is that the vector function

E(t) = JXp(t) to St S tg (31)
is a solution of the linearized state equation and can be given as
E(t) = ¢(t, to)I Xp(ty) = ¢(t, ty)Eg
The consequence of the second condition is that the data types satisfy
g(t)Tvm; (£) = gToT(t, to)my(t) = 0

Noting equation (2la) and equations (3) and (9), then &, 1is an unobservable
state of the linearized system.

Similar consequences occur for the nonlinear system as well. If the
first condition is satisfied by some set of integers, then the vector function

y(t) = AXp(t) t, St s tg (32)

is a solution of the nonlinear state equation for all A. If, in addition,
the second condition is satisfied by the same integers, then these solutions
are all indistinguishable to the data types; that is,

mi(w(t)) = my (Xp(£)) i=1, .. .,k
and the output is identical for all solutions defined by (32).
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State equation and condition one- It is next shown that the state
equation satisfies the first condition of statement [12] for those sets of
integers which are the integer powers to which any single physical unit
(meter, kilogram, degree), other than the unit of time, appears in the state
variables.

First, a restriction on the definition of the state is necessary. The
state, roughly, is a vector list of independent unknowns which suffice to
define the measurements and the observed system. Every physical quantity in
the problem is assumed estimated initially, as is implied by the existence of
a reference solution of the state equation. However, the true value of every
such quantity is unknown and any difference between the true and estimated
values can affect the data. Only the international unit phenomena, whose
values are one by definition, are regarded here as known. In many practical
problems, some quantities, which are estimated very accurately initially, are
treated as known, but such an approximation cannot be made here without
eliminating the calibration accuracy limit. In addition, the state variables
are assumed independent (no state variable can be given as a function of the
others) and suffice to define the measurements and the observed system (all
unknowns in the problem are state variables or functions of state variables).

The components of the state vector are given in units of seconds, meters,
kilograms, or degrees Celsius, which appear to arbitrary integer powers
(positive, negative, or zero)

as: B Y S. .
[X5] = sec m lkgm ldeg 1 i=1, .. ., n (33)
If one of the units, say length, is scaled by A
m = Am'

where A is any real number,3 then the same state expressed in the two units
is related by

X' = [‘xsi J X = AX (34)

If {Xp(t), XA(t), to < t < tg} are the same solution of the state equation
viewed in the two units, both satisfy the state equation

Xa(0) = E(a(®)) ,  Xa(t) = E(X, (1)

3The new unit, m', defines a different number of wavelengths of
krypton 86 to be the distance unit. This changes the numerical size, or
scale, of all distances by the factor A. No state variable can become the
distance, or known unit, by such a change of scale.
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The vector function, £( ), is unaffected by changes in the scale of any unit
since all quantities requiring units are necessarily unknowns and are state
variables or functions of state variables by definition. From this and
equation (34) it follows that

F(ALX, () = ALE(Xp(T)) (35)

Ay = [ )\Bi\]

Thus, the state equation satisfies statement [12] for the integers

{8i, i =1, . . ., n} which are the powers of the length unit in the state
variables. The same is true for the sets of integers, {vy;, i =1, . . ., n},
etc., corresponding to any other unit, except time, which appear in the
state variables.

where

Data types and condition two- In this section it is shown that the data
types satisfy condition two of statement [12] for those integers given above
with equation (35), provided only that the data types exclude calibrations.

Measurements are quantitative comparisons of like physical phenomena.
For example, radar ranging stations measure the phase shift between emitted
and received waves, this measurement being a relation between the observed
system and the station given by

no - L B - sl

As

which is a comparison of the station-vehicle distance, |Ry, - R¢|, with the
radar wavelength, Ag. All physical quantities required to define this data
type Ry, Rs, Ag appear among or are functions of the state variables by
definition of the state.

The basis for comparing like phenomena is made unique by defining a
single such phenomenon to be the unit. Calibrations are defined here to be
comparisons of physical quantities with the appropriate unit phenomena. The
values obtained from calibrations are given in units: seconds, meters,
kilograms, or degrees Celsius. It is assumed that the state is to be esti-
mated in these units so that calibrations must occur somewhere in the estima-
tion procedure. Any other measurement is a ratio of like phenomena, neither
of which is a unit. Such ratios are nonlinear in the unknowns and their
values are dimensionless and, therefore, unaffected by any change in the size

of units.

Assume that calibrations occur in an initial set of measurements. Then
the data types, {mj(X), i =1, . . ., k}, to be sampled are dimensionless
ratios of functions of the state variables whose values are unaffected by
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changes in the size of units. If X, X' refer to the same state given in
each of two sets of units that differ in size, then

mi(X') =my () i=1,...,k

where X, X' are related by (34) for changes in the length scale, and by
analogous relations for scale changes in any other unit. Therefore

mj (AX) = mj (X) i=1, ...,k (36)

A=[AJiJ

where {J;} are the integer powers to which any single unit appears in the
state variables and A 1is any real number. Thus the data types satisfy
condition two of statement [12] for the integers given above, provided the
data types are not calibrations. In view of equations (35) and (36), it can
be stated that:

[13] Statement [12] is satisfied by those sets of integers
{Ji, i =1, . . ., n}, which are the integer powers to which any single
physical unit, other than the unit of time, appears in the state variables
provided the data types are not calibrations.

Calibration Accuracy, the Meter Sticks, and Their
Relation to Initial Measurements

If the data types are not calibrations then, consequent to
statements [12] and [13], unobservable states occur and are defined by

£, = JXo» J = [Ji;l (37)

where X, 1is the initial state of the reference trajectory and {J;, . . ., Jn},
are the integer powers to which any single unit, other than the unit of time,
appears in the state variables. For example, the integers {J;, . . ., J,} for
the length unit are the powers to which the meter is raised in the components
X1, - . ., Xp of the state vector. For each unit (length, mass, or tempera-
ture) which appears in the state variables, one independent unobservable state
{goZ’ Eom? EOT} is defined by (37).

The initial state of the reference trajectory is assumed to be an
estimate based on some arbitrary and sufficient set of initial measurements.
It is also assumed that the error covariance matrix, Pp, corresponding to
this estimate is given and is a positive definite symmetric n x n matrix.
A basis of the unobsexrvable calibration states is
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Xy = [EolgomEOT (38a)
and a basis of its complement space is defined by

-1

Xp = any basis of {X: XTPA

X, = 0} (38b)

Earlier terminology is continued by referring to X as the observable
states, but this is correct only in the absence of independent unobservable
states other than (38a). The initial covariance can now be separated into
parts associated with Xy and X;:

Py = xm[xgp/'xlxm]-lxg 5 Xy [xﬂp;\lxu]_lxu (38¢)

or simply

It is also convenient to adopt the notation

Hzz  Him  Mit

T -1, 17!
[XUPA Xu] "1 Pmm Mme

11 Mt Hog

in order to identify individual elements from this positive definite matrix.

Initial estimation accuracy for any length- A length in the problem is
any differentiable scalar function of the state 7(X) which has dimensions of
length. If the length unit is scaled by A, then the value of 7(X) must also
be scaled by A to obtain Z(X') in the new unit, but if any other unit is
scaled by A, the value of Z(X) is unchanged:

L(AzX) = AZ(X)
(39)
L(ApX) = Z(ATX) = 72(X)
where
A= rxJiJ
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and the subscripts, 7, m, 1, indicate that the integers {J;, . . ., Jp} in A
correspond to the length, mass, or temperature unit. From Euler's theorem
(appendix C) for functions with the above homogeneity properties, it follows
that

1(Xs)

Xlvz = 0 (40a)

valid for any length, Z(X). The gradient is understood to be evaluated at
Xo. Analogous statements follow for all functions, m(X), 1(X) which are any
mass, or temperature in the problem

0 0
Xgvm = [ mxo) |, Xlve = 0 (40b)
0 T(Xo)

The accuracy to which any length is estimated from the initial measure-
ments is its MS initial error ratio, that is,

viTpave  viTepve  viTpyvi
= +
12(Xo) 12 (Xg) 12 (Xp)

n(l) = (41)

or simply
n(Z) = () + nu(2)

The part, n,(Z), is due to the unobservable initial errors associated
with the calibration states. The accuracy to which Z(X) can be estimated
from any subsequent processing of data from any noncalibration data types
cannot exceed nu(Z). Employing equation (40a) in the definition of P,
(eqs. (38)), obtain

nu(Z) = UZZ (42&)

Thus, the accuracy limit is Hi7 and is the same for all lengths in the

problem. 1In orbit estimation problems in which important lengths, such as
radar station location, planetary distances or miss distance, are estimated

from noncalibration data types, K77 1s the limiting accuracy obtainable.
Analogous statements apply to all masses or temperatures in the problem
nu(m) = Ymmo» nu(T) = Mo (42b)
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More generally, quantities, g(X), which have composite units (e.g., makgBdng)
have the accuracy limit

-1 -1
n,(g) = (G,B,Y)[XEPA Xu] B (42¢)
Y

Length with best initial accuracy- A length in the problem is any
differentiable scalar function of the state 7(X) which has dimensions of
length. The accuracy of the initial estimate of any such length is given by

I’I(ZJ = nm(Z) + UZZ

Since uyzz7 1s fixed and independent of 1(X) then the length which minimizes
n(Z) is any function, Z*(X), such that

(43)

1l
O

np (2%)
This requires

T
VI* Xy

1]
(=

By definition of X, (eq. (38b)) all vector§1which satisfy this equation
must be linear combinations of the columns of P, Xy

-1 -
VZ* = PA X,ua

Since 1*(X) is a length it satisfies equation (40a) so that

1% (Xo)
-1
3= [xﬁpg\lxu] 0
0
and then
vi* -1
Z*(XO) = pA (EOZUZZ + goml’(Zrﬂ + EOTUZT) (443.)

While equation (44a) does not give 1% (X) uniquely, it does give the gradient
of 1*(X) at Xy within the ambiguous factor, 1*(Xo). Analogous results are
obtained for the mass or temperature with the best initial accuracies
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vm* -1
m* (Xo) Pp (goZ”Zm * EomMmm * EOTumT) (44b)

"Meter sticks'" of the problem- In the absence of calibrations among the
data types, the estimation of the state from the data types is equivalent to
comparing all lengths in the problem to 7*(X) and all masses to m*(X). The
quantities, 72*(X), m*(X), 1*(X) are the intermediate standards or 'meter
sticks'" of the problem since, for their respective physical phenomena, they
occupy the role of a meter stick used to measure a distance. This is shown
by the following analysis.

If the data types exclude calibrations then unobservable calibration
states are routinely present and can be removed from the data processing as
described in an earlier section. This is done by transforming the deviation
state tc a new set of variables, w, defined by

X = [xm E xé] g?- (25)

u

In the present context, Xj and X, are defined in equations (38). The new
v~- " bles, wy, w; are the components of the state in Xp, Xy. The components,
wp, can be estimated from any (sufficient) noncalibration data types

(eqs. (28)) while the components W, cannot (eqs. (29)).

The nature of the varlables, Wy, can be determined by premultiplying
equation (25) with XuPA , and inverting the result to obtain

V2 TR/1* (Xo)
iy = vmeT/m* (%) (45)

VT*TX/T*(XO)

Thus, the quantities Wy, which cannot be estimated are the errors, Z*, m*,
T* with which the "meter sticks' of the problem have been estimated from the
initial measurements.

Rather than analyze the nature of wp directly it is convenient to
consider that part of the initial estimation error for any length, mass, or
temperature in the problem which can be estimated from noncalibration data
types. The estimation error, I, for any length, Z(X), is given from the state
estimation error by

7= viTx
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This can be separated into observable and unobservable parts
7= viTxguy, + v2Txymy,

or simply

The observable part is
im =1-V1 XyWy

which, noting equations (40a) and (45), becomes

5 _ 5 _ L(Xo) wl
Iy =1 T (%) V™ x

If the ratio of 1(X) to the meter stick is defined
A
rx) = - (46)

then the estimation error for this ratio is

w0 - v = iy |7 R
so that
Ip = 1* (Xo)T (47)

Thus, for any length, Z(X), that part of the initial estimation error which
can be estimated from samples of noncalibration data types is the error with
which 7(X) is known relative to the meter stick, 7Z*(X), of the problem.
Similar conclusions apply to all masses and temperatures in the problem. The
estimation procedure, when using noncalibration data types, is at most one of
comparing all lengths to 7*(X) and all masses to m*(X).

Calibration accuracy and initial measurements- The accuracy to which any
quantity requiring units (other than time) can be estimated without performing
new calibrations is limited. The relation of these limits to the measurements

performed initially is examined next.
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The initial measurements are those used to determine the reference
trajectory. These have been loosely described as any arbitrary and sufficient
set. It is further assumed that this set is finite; that a vector, Y, can be
given which is a (finite) 1list of all independent physical quantities required
to define the initial measurements; that the state variables, X, can be
included in the variables of Y, and that the set of initial measurements is
sufficient to determine Y.

In the preceding statement, the independence of the variables, Y, means
that there is no nontrivial relation

g(y) =0

among these variables. Further, the vector, Y, can always be given as

X
Y = {--- (48)
z

Here, X 1is the state vector which has appeared throughout the earlier text
and is a list of independent quantities required to define the observed
dynamic system and the data types. These can always be included in Y, since
the reference initial state, Xg, could not otherwise be determined from the
initial measurements. However, the initial measurements are not restricted to
the data types so that additional unknown physical quantities, Z, are gener-
ally required for their definition. Finally, the sufficiency of the initial
measurements to determine Y means that there is at least one subset of mea-
surements for which an inverse function exists giving all the variables, Y, in
terms of the data. This, of course, guarantees that Xg can be determined.

The above description of the initial measurements is sufficient for
immediate purposes but is incomplete. A statement to insure that all the ini-
tial measurements are relevant to the estimation of X, is lacking, as well as
a statement on the measurement noise.

Next, list all the initial measurements and segregate them into calibra-

tions of length, mass, and temperature and measurements that are not such
calibrations; that is,

Li(Y), Z,(Y), . . . (49a)
refer to the initial length calibrations,
ml(Y)s mZ(Y), LRI ] Tl(Y): TZ(Y), LI (49b)

are the mass and temperature calibrations, and finally,
n; (Y), ny(Y), . . . (49¢)
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are the remaining measurements. The measurements of this last category are
dimensionless in length, mass, and temperature.

The measurements in equations (49) are required to be sufficient to
determine Y; that is, some subset of (49) has an inverse function which
gives Y in terms of the data. Let Hp(Y) be the matrix whose columns are
the gradients of equations (49) evaluated at Y, and let Qa be the noise
matrix. Take the requirement for the sufficiency of equations (49) to mean
that Hp(Y) has maximal rank at every Y, and, for simplicity, assume that all
initial measurements are made with independent noise so that Qp is diagonal.
Then the initial measurements can be processed to obtain the minimum variance
estimate Y, and the initial covariance is given by

-1
~n -1
E(77T] = [Hati HX] (50)
where H, 1s evaluated at Yg and y is the estimation error Y - Yo

The columns of Hp can be partitioned into two parts that contain the
gradients of equations (49) with respect to X and Z, respectively, and these
can be further partitioned according to the category of measurements

!
Hy Hyz ] Hym : Hy : Hyn
Hy = |- | = |-~~~ 71~"~~1——- (51)

Hy Hzz 1 Hzm | Hzo | Hzp
The initial covariance of i, which was written as P, and assumed given

throughout the earlier text, is the appropriate submatrix from equation (50),
and is readily given as

2% 1T SETE DU R R N
Py = E[XXT] = [HXQA Hy - HyQ, HZ[HZQA HZ] HzQ, HX] (52)
When all the initial measurements are functions of X only, then
_1 T -1

In this case, it follows by using equations (40) that the matrix, XEPAIXu, of
equation (38c) is diagomnal and yields the calibration accuracy limits:

2 -1 2 -1 2
e Zli(xo) - Zmi(xo) L Zfi(xo)
1 a3 ? mm q; ? TT q;

The summations in equation (53) are taken over the appropriate category of
initial calibrations and {q;j} are the MS measurement noise for these

(53)
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measurements. The meter sticks for this case are given by evaluating
equation (44). Thus, for length,

ap\ 1 "
ls

7.
Vi* = 1*(X,) 1 2L vz,
0 E :qi q ‘i

and it can be verified that

ii
15(X) = Lo E o L
1

satisfies the gradient equation, with Ly an arbitrary length factor. Any
length proportional to the weighted combination, 2: (24/9i)11(X), is estimated
initially to the accuracy, u,,. Analogous results are obtained for m*(X)

and T*(X). e

The quantities, u 7> Hmm> Hopo in equations (53) depend only on the
accuracies of the initial calibrations. They are smaller in magnitude than
the MS error ratio of any single calibration if more than one calibration is
made. If only one quantity is calibrated initially for a particular unit,
then it is the unobservable meter stick for that unit. If more than one is
calibrated, then none of them is the meter stick, although the most accurately
calibrated one may dominate the appropriate sum in equations (53) and be the
approximate meter stick for its unit.

In the preceding special case a direct relation between calibration
accuracy limits and initial calibrations is obtained. However, the condition
that the initial measurements be functions of X only is not generally sat-
isfied and the quantities actually calibrated may have little to do with the
variables of interest, X. For example, in orbit determination problems the
actual distance calibrations are buried in the multitude of experiments from
which the value of the speed of light is estimated. This value is, in turn,
used in the initial estimates of such things as radar station location and
frequency, gravity field constants. In such cases all the initial measure-
ments can influence the accuracy limits, M775 Hmms Mo These limits are the
diagonal elements of [XEPAIXU]_l which, for the general case, can be written
as

[xgpglxu]_l = [b - RTI;R]_I (54)

where X, are the calibration states for X (eq. (38a)), and D is the
diagonal matrix

21 (o) /a,
D = >oniro)/ay

> (Yo)/a;
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Also, I, and R are

-1
I, = HyQ, 'H,
-1= ! -1_ 1 -1-
R = [HZZQZ l | HzpQp m | HpQq T}

The matrix R has one column for each unit other than time; H,7, Hyms HZT

are the partitions of Hy in equation (51); Q;, Qp, Q. are the corresponding
partitions of the noise matrix, and £, M, T are the vectors

21 (Yo) m (Yo) 11 (Yo)
12(Yo) my (Yo) T2 (Yo)

o~
m

.
=1
1

.
Al
i

The elements of the matrix on the left in equation (54) appear in the earlier

results (eqs. (42), (44)) as w77, ¥mm> Hzp> =« + + - All the initial
measurements can appear in these elements because of the term, RTI;IR.

Finally, it can be shown from equation (54) that the calibration accuracy
limits satisfy

2 -1
> i) (55)
F11 a

and similarly for gy, M, .- The equal sign is removed whenever R has no
trivial column; that is, whenever any initial calibration has nontrivial
dependence on the variables of Z.

Appendix D contains a simple example to illustrate the use of the above
results.

Clock Calibration, the Velocity Standard, and
Estimation of the Speed of Light

The time calibration state was ignored in the earlier discussion. The
internationally defined second is based on transitions between energy levels
in Cesium-133 (ref. 14). If a cesium clock is used, all time measurements are
calibrations and an unobservable time does not occur in the problem.

Assume, then, that a clock different from a cesium clock is in use and
that when the clock indicates the passage of one clock second, r seconds on a

cesium clock (standard time) have actually passed. Also assume that
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T =1second and ¥ =0 (56)

In general the clock rate will drift ( # 0) but it is assumed here that the
drift is negligible over the time interval of the observations.

The clock rate, r, is analogous to the length of a meter stick in that a
reading of the clock time, 7, is a dimensionless comparison

(57)

,_]
]
Rl

of the standard time, t, with the clock rate,*r, in the same way that length
measurements using a meter stick of length, 77, is a dimensionless comparison
of two lengths

_ 1
m=7E
The state equation
dX _ =
I - T (6a)

governs the evolution of the state as seen in standard time. As seen in
clock time, the state satisfies

ax -
(—1'—1'. = I‘f(X)

the state can now be augmented with the unknown clock rate

X rf(X) B
T 0

The time calibration state- As before, assume that the time unit is
scaled arbitrarily

sec = X sec'

Then all unknowns, as seen in the new unit, are scaled accordingly

v = A v frequencies and velocities
r' = Ar clock rate
' = time-dimensionless quantities
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whence

Y' = ArY
Ap = FAJiJ
{J;} = powers of the time unit in variables of Y

As before, it is readily shown (noting that the independent variable, T, is
unaffected by the scale change) that

AE(Y) = g(AgY)

Assume, also, that all measurements to be processed are time dimensionless, so
that

mi (ApY) = mj (Y) i=1,2, ... (58)

Then, using statement [12], page 29, the following state
20 = gy, (59)

where
o[ ]
<Xo(to)>
Yy =
1

Xo(ty) = reference initial state

is an unobservable state (the time calibration state) of the linearized
augmented system.

The linearized augmented state equation- This equation can be routinely
derived as

where
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G(Yo) = fvTg, (M) = [-=--——- 4= (60)

Yo (7)

Here, F(Xp) is the coefficient matrix of the linearized equation in standard
time.

An alternate derivation can be made by defining the state deviation

(1) = X(t(1)) - Xo(T) = X(1) - Xo(1) + XO(T)(t(T) -T) +

or

£(1) = x(1) + Xo(T)T6T + . . . (61)

where x(t) is the usual definition of the state deviation (X(t) - Xo(t)),
which, to first order, is a solution of

& = F(Xo(1)x

Equation (60) is now readily reproduced by taking the t-derivative of
equation (61). Thus, the augmented linearized equation describes the time
history of &(t) (eq. (61)) and includes the effect of the secularly
increasing discrepancy between standard time and clock time.

Linearized measurements- If a data type, M(Y), is sampled the linearized
data used in the linearized estimation procedure can be routinely expressed as

sm = (VM)$O(T)y(T) v e

or

dm = h(T)Ty(to) + €

where
h(t) = oT(1,t0) (M),
2t My, (0

An alternate derivation can be given as follows. Suppose a data type, M(X),
is sampled at the clock time, t. The sampling obtained is then
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m = M(X(t(T))) + €

That is, it is a (noisy) sampling of M(X) on the actual state at the standard
time corresponding to the clock time, t. The residual or linearized sampling

is then computed by subtracting the value of M(X) evaluated on the reference

state at the time t = 7.

sm = M(X(t(1))) - M(Xo(1)) + €
which, after expanding X(t(r)) and retaining first-order terms, is
Sm = VMTE(T) + €

where £(t1) is the state deviation defined in (61). It is not necessary to
include the clock reading as an additional measurement in the problem, since
any random reading error, er, can be included with the sampling error, e, in
the amount, VMTXO(T)er.

Velocity calibration accuracy- 1f all data types are dimensionless in
distance and time, an unobservable velocity exists which serves as the stan-
dard against which all velocities in the problem are compared. 1Its initial
estimation accuracy is the lower bound on the accuracy to which any velocity
can be estimated from any sampling of the data types.

This estimation accuracy limit is given as

Ny = WMgg T At (62)

where VL UZT’ M . are the elements of the matrix

P11 M T.-1, -1
) = [YePa Y
Mrr Mart
Yu = [E:ZE:T]

E:Z = JZYO distance calibration state
z: =JY time calibration state
T T O
PA initial covariance matrix
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Equation (62) for the velocity accuracy limit is obtained by applying
equation (42c). It can also be shown that the velocity standard in the
problem, v*, is proportional to I*/t* where L*, t* are the distance and
time meter sticks of the problem.

Speed of light estimation in space mission problems- Space probe
trajectory estimation problems have been treated as experiments to estimate a
number of fundamental parameters of the solar system. One expects that a
necessary condition for significant improvements in the estimates of such
parameters is that their initial estimation accuracies be significantly poorer
than the appropriate calibration accuracies in the experiment.

For example, consider the possibility of improving the estimate of the
speed of light in a space probe trajectory estimation problem using radar
measurements. The independent unknown quantities required to define the data
types can be listed, in general, as

c/¢ Speed of light

T Clock rate

Ry Vehicle state

Vy

Eéi Radar station locations and frequencies
si
w Earth rotation rate and gravity field parameters
U

Y = Ji
Rp. Planet states and gravity field
1 parameters

Vp,

Hi

J.
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The initial measurements include an experiment to estimate the speed of light

m; = d = cAt

m9_=At

This experiment consists of measuring a distance, d, and the time, At,
required for light to travel this distance. Both measurements are calibra-
tions and the experiment {m;, m,} is equivalent to a large number of similar
experiments from which the current estimate of the speed of light is obtained.
The initial estimation accuracy for the speed of light is then

~\2
_ c -9 dz
G E[(z)]“ 7 e

where q,, q,, are noise variances of the two calibrations. Currently, the

speed of light is estimated to one part in 300,000 or V/(q.) = 0.3x107°.

All remaining initial measurements are assumed to be functions of Y
and these may include additional distance and time calibrations

ZiZ(YJ iz =

]
—
-
-
=
o~

£, () dg=1, .. ., N

The complete set of initial measurements depends on At as well as the
variables of Y. 1In that case, temporarily augment the state to

)

and then the initial covariance of Y' 1is given as

¢ 1] 0 0]
_____ qo D
até 0 a,
! q
Hp = 0 0 : and Q = 2
|
|
) 1
o o .
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It is assumed that the rank of Hp 1is equal to the number of variables in Y'.

The variable, At, is irrelevant to the estimation problem since the data
types are independent of it (they are functions of Y). Neither is it of
interest to estimate At via the correlations of its initial estimation error
with those of the remaining unknowns. 1In that case, At, can be removed from
the estimation equations as described earlier and, in particular, equa-
tion (54) is applied to obtain the calibration accuracies of the reduced
problem. The result for the velocity accuracy limit is (lengthy algebra is
omitted here)

9e 1 1\!
Ny = —qE = (q—,. + O_—V') (63)
1 o <
v
where
-1 -
NZ A2 NT ~2 L
.. = E i), A
v 93 qi
i=1 i=1

The summations in o, are taken, respectively, over all initial length and
time calibrations except those in the speed of light experiment {m;, mp}. It
is apparent from the result that

1. If the speed of light experiment had not occurred then the velocity
accuracy limit would be oy. Conversely, if no calibrations other than
{my, mp} had occurred, then the velocity accuracy limit would be q. and the
speed of light would be the unobservable velocity standard.

2. In general, n, < q. and it is theoretically possible to improve the
accuracy of the speed of light estimate to n, by sampling noncalibration
data types of the form m(Y).

3. A necessary condition for significant improvement in the speed of
light estimate by sampling noncalibration data types, m(Y), is, roughly, that

that is, that the velocity calibration accuracy due to the remaining
calibrations, {Z;}, {t;} be at least as good as the accuracy of the initial
speed of light estimate, q..

4. In practice, it is usually true that
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so that negligible improvement can be expected and the speed of light is very
nearly unobservable in space vehicle trajectory estimation problems.

Discussion

An elementary view of estimation is taken here to analyze the naturally
occurring calibration limit on the obtainable estimation accuracy. Estima-
tion, in general, is a comparison of some set of unknown quantities with the
internationally defined unit quantities: the second, meter, kilogram, and
degree Celsius. A direct comparison of some quantities in the problem with
the unit quantities (calibrations) must occur at some point in the estimation
procedure. In most cases this 1is done initially and subsequent measurements
are comparisons among unknown quantities. In that case, the accuracy to
which the unknowns can be estimated in terms of the international units is
limited by the accuracy of the initial calibrations. For example, the accu-
racy with which a length can be estimated by comparing it to a meter stick is
limited by the accuracy with which the meter stick was calibrated initially.

Estimation problems are generally analogous to the above simple example
even though several data types or measuring devices, many initial calibra-
tions, and other physical units besides the unit of length may appear in the
problem. If the data types are not calibrations, then an independent
unobservable state is readily given, one for each physical unit in the problem
(statements [12] and [13] and eq. (59)). These states define an intermediate
standard of comparison, or meter stick (eq. (44)), and a calibration accuracy
{(eq. (42)) for each physical unit (time, distance, mass, and temperature)
having the best initial estimation accuracy in the problem. The procedure of
estimating the unknowns by sampling noncalibration data types is, at most, one
of comparing all times, lengths, masses, and temperatures in the problem to
these meter sticks.

The initial covariance and the calibration accuracies can be given in
terms of the initial measurements (egs. (49) to (52)). 1In the simplest case,
the accuracy limits depend only on the initial calibration measurements
(eq. (53)) but, in general, these limits can depend on all initial measure-
ments (eq. (54)). An example is given in the discussion of the velocity
accuracy limit in space probe trajectory estimation (eq. {(63)).

Unobservable calibration states are theoretically present whenever the
measurements are not calibrations, but these states are often eliminated in
practice by treating some quantities, which have been estimated very accu-
rately initially as exactly known quantities. For the theory of this report,
the values of all physical quantities in a problem are considered unknowns;
that is, all are estimated initially but their true values are unknown and
their estimation errors can affect the data. The state variables to be esti-
mated are then any set of independent unknowns which suffice to define all
unknown quantities in the problem. In practice, variables which are very
accurately estimated initially are often deleted from the state variables;
that is, they are treated as having no estimation error. It is assumed that
the inclusion of such variables in the estimation would have negligible effect
on the estimates of the remaining state variables. As a result of this
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procedure, the sufficient conditions for the existence of unobservable
calibration states (statement [12]) are no longer satisfied by the problem;
the required homogeneity properties of the state equation are eliminated and
the data types can become calibrations or comparisons with exactly known
quantities. The resulting removal of the lower bounds on estimation accuracy
causes no difficulty in practice provided reported accuracies do not approach
the actual calibration accuracy limit. It is, of course, not possible to
exceed this limit without performing new calibrations. The size of the cali-
bration accuracy limit is given from the initial covariance (eq. (42)) and can
be estimated if some reasonably correct idea of the initial measurements is
available.

Generally, a necessary condition for significant improvement in the
estimate of any parameter is that its initial estimation accuracy be signifi-
cantly poorer than the appropriate calibration accuracy limit. At best, the
parameter can be estimated to nearly the calibration accuracy limit by indef-
inite sampling of the data types. However, the existence of unobservable
states in addition to the calibration states can impose further 1limits on the
accuracy to which a parameter can be estimated.

RESUME

Mathematically, estimation is a matter of processing noisy measurements
to obtain the best estimate of the unknown quantities on which the measure-
ments depend. The elements which appear in the processing equation for linear
estimation (eqs. (5)) are the prior estimate and covariance and the measure-
ments (costates, MS noise, and data). The processing results in a new esti-
mate of the state and its covariance of estimation errors. This report
describes some results from a study of the relations between the elements of
the processing equation and the resulting estimate and performance.

In the first section, the processing of arbitrary sequences of measure-
ments is examined using the notion of equivalent sequences and data. This
notion provides a basis for carrying out a number of operations in the pro-
cessing of measurements. A sequence can be compressed to an equivalent
sequence containing a minimum number of measurements. The uncorrelated equiv-
alent basis sequence and its associated eigenvalues give the performance of
the sequence in reducing the estimation errors from their values prior to
processing. Further, equivalent sequences can be used to selectively reduce
the information to be processed so as to estimate only some of the state vari-
ables, or to separate the processing equations into independent lower order
parts.

In many estimation problems, the measurements are obtained by sampling
one or more data types at an arbitrary sequence of times. The characteristics
of the data types are then constraints on any such sampling. One character-
istic is observability, the sufficiency of the data types for the determina-
tion of the state variables. If the data types are insufficient, then a
suitable transformation of the state gives the data types in terms of a
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reduced set of new variables which are linear combinations of the original
variables and which can be determined from some sampling of the data type.
This transformation also separates the estimation calculations into trivial
and nontrivial parts, the latter being a lower order set of equations for
estimating the reduced set of observable unknowns.

A theory of calibration accuracy limits in estimation problems is
obtained by applying observability analysis and recognizing the physical
nature of estimation. Estimation is intended to compare a physical system
with the internationally defined physical units and this is done by taking
measurements which, in general, are comparisons of like physical phenomena.

If the measurements are not calibrations (not direct comparisons with the unit
physical phenomena), then the estimation procedure is shown to be one of com-
paring the system to a set of intermediate standards of time, length, mass, or
temperature. These intermediate standards are unobservable and their initial
estimation accuracies (calibration accuracies) limit the accuracy to which any
time, length, mass, or temperature in the problem can be estimated without
performing new calibrations. Further, to obtain significant improvement in
the estimate of any unknown, it is necessary that its initial estimation accu-
racy be significantly poorer than the appropriate calibration accuracy. The
existence of independent unobservable parameters in addition to the
intermediate standards will further limit the obtainable estimation accuracy.

In principle the state 1s either observable to the data types or the
estimation problem can be reduced to a lower order problem in which a reduced
number of variables are observable. Computations to determine the observable
parameter space and carry out the reduction are based on the information
integral (eq. (19)). An application of this method is found in reference 12.
The necessary computations are difficult, especially in large-order problems.
Alternative methods based on derivatives of the data type (ref. 13} are avail-
able but not yet explored. The structure of relations between data and per-
formance in the case that all states are observable remains unclarified. In
many orbit determination problems using radar data it is recognized that one
or more parameters may be observable but computationally difficult to estimate
(e.g., refs. 4, 5, 12) because the data type provides little information on
these parameters compared to others. Computationally, such cases can be
treated with special procedures (e.g., refs. 5, 12).

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., 94035, January 29, 1971
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APPENDIX A
COMPUTATION OF AN EQUIVALENT BASIS SEQUENCE

Given an information matrix
_.]_T
If = HQ 'H
obtain an equivalent basis; that is, a matrix, of maximal rank such that
T

HgHp = If

This problem is identical to the computation of a square root matrix of
maximal rank for any symmetric positive semidefinite matrix. The method
reviewed here is also described in reference 10.

COMPUTATIONAL METHOD

Let B be any n x n symmetric positive semidefinite matrix and let

{v.} be the columns of any nonsingular n x n matrix. Define the matrices

{Bk} as
( _T
B, v, VvB
By -~ K ie T £ 0
v, B, v
By =B, B, =J KkTk
. -T_ =
By if VkBka =0
and define the vectors {Ek} as
B,V
kYk . -T, -
?—:— if VkBka 7£ 0
& _ VB
0 if GEBRGk =0
\

The matrix whose columns are the nontrivial vectors among {Ek, k=1,
is a square root of B having maximal rank.

(AD)

(A2)

., n}

53



This result is proved in the following series of statements.

[1] The matrices B;, B,, . . . are all symmetric positive semidefinite.
This follows from induction since the statement is true for B; and if it is
assumed true for By it follows that it is true for By

[2] The matrix Bp,; is zero,
Bpney = 0

The null space of Bks+j includes (a) the vector, Qk and (b) the null space
of By. This can be verified from the definition (Al) above; it follows
immediately that By, vk = 0 and that if v is any vector for which Byv=0
then also By,;v = 0. Therefore, the null space of Bg+; includes the vec-

tors Vi, Vo, . . ., vy and, in particular, the null space of Bp4; includes
all n independent vectors, {vy}, and is zero.

[3] Let C be the matrix whose columns are the nontrivial vectors among
{cx, k=1, . . ., n}. C 1is a square root matrix of B

B = ccT (A3)

Employing statement [2] and the definition of By, €y, and C obtain

0 = Bpyy = Bp - Cylr = . . . = B1-3 &ep = B - T
k=1
[4] The nontrivial vectors among {Ek, k=1, . . ., n} are independent

and C has maximal rank.

To prove this, show that there is no nontrivial linear combination of the
nontrivial {Cy} which is zero. Let

n —_
kz Ska =0 (A4)
=1

be any linear combination which is zero and consider the dot product of vi,
with this sum of vectors

n
(?;% skéi)vl -0 (AS)

for nontrivial c¢j we have from (A2)
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-T- V1BV
VIS = —m—T7T

()

But, as pointed out in statement [2], the vector v; is in the null space of
all {Byx, k = 2} and all Byx are symmetric positive semidefinite so that

WBk=0, k=2 (A6)

and equation (AS5) becomes

T
S$,VyCy = 0

Thus, if c; is nontrivial, then s; 1is zero and equation (A4) becomes

n -
Skck =0 (A7)
k=2

These steps are repeated for Vv,, forming the dot product of v, with
equation (A7) and obtaining s, = 0 if &, 1is nontrivial. When repeated in
succession for Vg3, V4, . . ., Vp, the {s;} are zero for all nontrivial cj.
Consequently, there is no nontrivial linear combination of the nontrivial
{Ek} which is zero. These vectors are, therefore, independent and the matrix
C has maximal rank.

In summary, the matrix C whose columns are the nontrivial {Ek} is an
equivalent basis of any sequence whose information matrix is B.

CHOICE OF THE VECTORS {Gk}

The vectors {vy} can be any n independent vectors. The columns of the
unit matrix are utilized in reference 10 and this choice places the resulting
square root in lower triangular form.

Alternatively, the {Gk} can be selected to remove beforehand those which

yield trivial vectors in equation (A2). This can be done by obtaining a
partitioned matrix

V= [vu i vm]

in which the columns of V;; are any basis of the solution space of

BV = 0 (A8)
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and the columns of V, are any completion to a set of n independent vectors,
for example, a basis of the solution space of

T- _
Vuv = (0

It is readily seen that the number of columns of V; 1is the rank of B, and
that all columns of Vy give trivial vectors, Ty, when processed in equa-
tions (Al) and (A2). In that case, only the columns of Vp need be processed
to obtain the square root of B and these all yield nontrivial vectors in

equation (A2).

Insensitivity to computational error is an important factor in the choice
of computational procedure for this problem, but this question is not
addressed here.
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APPENDIX B
INFORMATION SEPARATION
SEPARATION LEMMA

Let (H, Q) be a measurement sequence and ¥ the column space of H.
Let (5 be any arbitrary subspace of # and

dim(#y N I) = k

Then an equivalent basis sequence of (H, Q) exists which has k -elements that
are a basis of ¥y N ¥,

The equivalent bases of (H, Q) are all the square roots of maximal rank
of its information matrix. All such square roots are bases of the same space,
Hp. The statement to be proved asserts that for any specified subspace of
Hn, a square root can be found, part of which is a basis of the specified sub-
space. Such a separated equivalent basis is not unique for the specified
subspace, but it separates the information matrix uniquely.

The sketch visualizes the lemma.
Here, #{ 1is the whole costate space and
I includes both ¥, and 4(;. A parti-
tioned equivalent primary basis

(i, Q@ = [Ha | Hg]

is to be found for which Hpy 1is a
basis of #Hp N Hy and HR refers to the

Ha N Hp=Ham remaining columns which are a basis of
some subspace of ¥y outside .

PROOF

The following proof outlines the required computational procedure.

1. Let Hp, Hyp be, respectively, any basis of #, and an equivalent
primary basis of (H, Q). The first is assumed given as the definition of ¥
and the second is computed by procedures already given and always exists.
Assume, also, that Hp has r columns.

2. Compute any basis, HAMl’ of the subspace ¥jpy. The intersection,
HaMm, is always a linear vector space so that a basis exists and can be
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!
computed as follows. Let [HA : HB] be any completed basis of the whole space,
¥, which contains Hp, and express Hp in terms of this basis

Hy = [Ha | Hp] [EJ (B1)

where the coefficient matrix, [égl, is computed by inverting (B1l). Then
define B

D; = any basis of {d: Bd = 0} (B2)

and then

111

Ham, = HpD1 = HpAD, (B3)

Every column of HAM1 is simultaneously in ¥, and #(;; every column is

independent, and every vector which is both in ¥, and #yy can be given in
terms of HaM,- Consequently, Hay, is a basis of JHyy-.

3. Next, define the partitioned orthogonal T x r matrix
[D ¢S]

where D 1is obtained as the Gram-Schmidt orthogonalization of the columns of
Dy, and S is any orthonormal basis of {5: DT5 = 0}. Then define

*

Hy = Hy[D ! S] (B4)

Since [D ! S] is orthogonal then

Hy = Hy (B5)
and the submatrix
Hpy = HyD
is a basis of #H,y, while
Hp = HpS (B6)

is such that #Hg N K, = 0. Consequently,
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iy = [Han | Bg] (B7)

is the required partitioned equivalent basis of (H, Q). The corresponding
equivalent data for the fictitious measurements defined by the columns of (B7)
is given from equation (12) of the text.

DISCUSSION

1. The separation procedure is trivial in the case of sequential
processing of single measurements. A single measurement is either in or
outside of ¥,, so that one part of the separated basis is the measurement
itself and the other part is null.

2. Given the sequence, (H, Q), and the subspace, #,, the information
matrix is uniquely separated by the above procedure

3 T
HQ™'HT = Hyyiyy + HRHR (B8)

The corresponding parts of any two partitioned equivalent bases are also
equivalent since they are constructed to span the same subspaces (statement [6]
of the text).

3. The separation states that the equivalent basis can be selected so
that some of its measurements are in any specified subspace and the remainder
are outside that subspace. This permits selective processing of information.
The available information is fixed by the actual sequence of measurements but
this information can be reduced by deleting or delaying the processing of any
measurement (s) from the actual sequence or from any equivalent sequence.
Finally, the separation permits removal of measurements within or outside any
selected subspace by deleting from processing either of the terms in (B8).

4. The influence of each of the separated terms in (B8) on performance
(reduction of MS estimation errors from their prior values) is considered
next. Suppose Hp is some given subspace of #H and let Hg be its
uncorrelated complement space

Hy = {h: hiPH, = 0} (B9)

P, being the prior covariance. If only the term, Hpy, is processed then
there will be nontrivial reduction of MS errors for every parameter whose
costate is not in the uncorrelated complement space of ¥yy. This includes
#Hpy and may or may not include all of ¥,. There is no error reduction for
any parameter whose costate is in the complement space of ¥ and this
includes #(g.
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If only the measurements Hp are processed, then there is nontrivial
error reduction for some parameters with costates in #Hp since every column
of HR 1is outside #a. In addition, there is nontrivial error reduction for
some parameters with costates in J{ except in the special case that every
column of HR is in #g. Thus, the capacity of the original sequence to
reduce errors in #, 1is not generally isolated in the extracted measurements,

Hapm-

As noted above, if only the extracted measurements, Hpp, are processed
then there is no error reduction for parameters with costates in #Hp. Further,
the posterior estimation errors for parameters with costates in ¥ are
mutually uncorrelated with those in Jz so that the complement space of ¥
is the same set of parameter costates for both the prior and posterior
covariances. Consequently, the complement space of ¥ remains fixed if a
succession of measurement sequences are treated in the same way. It is
possible, therefore, to prevent error reduction on any given subspace, ¥Hp, by
selectively processing only information in its complement space, #,, and the
complement space need be determined only once.

SEPARATION OF ESTIMATION PROBLEMS INTO INDEPENDENT PARTS

The estimation calculations can be forced to separate into independent
parts by selective removal of some information from each sequence that is
processed. The data processing then separates into two lower order problems.

Let P, be the initial covariance (MS estimation errors of the
reference trajectory), let #3 be any given set of parameters with basis, Hp,
whence its initial uncorrelated complement space is

- T
g = {h: h'PpHy = 0} (B10)

The two subspaces, #p, g form a complete decomposition of the whole costate
space and will remain fixed throughout the data processing.

Suppose that the following two-part separation is made on every
measurement sequence (H, Q) to be processed

| 1 '
0 = [y | gy | 93]

[}
where [HAM ! HR] is the first separation of (H, Q) into a basis of ¥y and
. f 1 . . - .
a remainder Hp; and [HRB ; HR] is a separation of Hp into a basis of

1
Hp oV Hp  with Hé as the remainder from this second separation. If Hp is

removed from every sequence to be processed then ¥, is unobservable to the
measurements Hpp, and #Hg 1is unobservable to HAM’ so that the estimation

60



calculations can be decomposed into two lower order problems associated with
each of the two subspaces. Some formulas for the separated problem are given
next. Algebra is largely straightforward and omitted.

Let lp, Hg be any bases of #,, Hg, respectively, and define the
corresponding subspaces of the state space with bases

Xp = PpHp
(B12)
XB = PAHB
Together these form a transformation of the state space
I
x = [Xa 1 Xp|w = Xawa + Xgwp (B13)

The new variables, w, are the components of the state, x, in the basis

1 . . .
[XA : XB], and these are linear combinations of the parameters of Hp and Hg,
since

-1
T T
wp = (HAPAHA) HAx

-1
T T
B (HBPAHB> HBX

Transforming the state estimation error, X, into the new variables, w, obtain
the initial covariance of w as

=
It

|
|
|

W = E[aiT] = [====-=—~ R (B14)
1
|
|

The nontrivial parts of W, are the initial covariances of WA, QB, and are
written WOA’ Wop hereafter.

If one measurement sequence is separated as in (B11) and only Hpys Hpp
are processed then the posterior covariance of Ww is

I
| !
' |
I
W=l-—1--j=|-—7"7""~"—~ - (B15)
| i
|
| )
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where, for convenience, the notation

= xT =yl
Mp = XAHAM = HAPAHAM
(B16)
_ 4T .
Mp = XBHRB = HBPAHRB
has been used. The estimate, W, is given by
c e W T -1
(B17)

. T -1
i = Woghg [T+ MWogM] ™y

Here, Yps Yg are the equivalent data vectors corresponding to the measure-

ments  Hppy, HRB’ respectively, and which are assumed computed with the separa-

tion of (H, Q) in accordance with equation (12) of the text. If additional
measurement sequences are separated as in (B11) and only Hpym, HRg are

processed from each sequence, then the processing equations remain separated,
being the same as (B15) and (Bl7) except to replace, Wop, Wog Wwith the prior
covariances and to replace W,, Wy with the changes in estimates

WA_WA, WB"WB

Thus, by removing Hﬁ from each sequence, the calculations for
estimating X can be separated into two independent lower order problems for
estimating wp, wg. The processing equations (B15) and (B17) are entirely
analogous to the original equations (5) in the text.
1]

Finally, the estimate, X, and covariance, E[Xx for the original state

variables are recovered at any step from

X = XAwA + XBwB
(B18)
P = X WXL + X, W XL
= AaNaMA Tt ApWpip

The separation above is trivial for sequential processing of single
measurements and is intended only for treatment or analysis of one or more
batches of measurements. The neglected measurements, Hﬁ, are generally non-
trivial and provide nontrivial error reduction for some parameters in both
¥y and Hp, since all the columns of Hy, are neither in H, nor ¥ by con-
struction. Further, the information content of all the neglected measurements
will differ depending on the subdivision of the total set of measurements into
batches for separation. Although the choice of subspace, HA, can be made
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arbitrarily, the importance of the neglected measurements, Hé, to error

reduction in #,, Hy is expected to depend on how well the choice of ﬂA
corresponds to some naturally occurring subdivision of the problem into nearly

independent parts. Such a natural subdivision, when it exists, would be
inherent in the problem; that is, in the observed dynamic system and in the
data types employed for measurements, but this matter is beyond the present
scope which deals with processing arbitrary measurement sequences.
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APPENDIX C
SUFFICIENT CONDITIONS FOR UNOBSERVABLE STATES

The sufficient conditions and corresponding unobservable states derived
here are the basis of discussion in the text of the proposition that if data
types exclude calibrations, then the physical scale of the problem cannot be
determined to better accuracy than it was known a priori, and this limits the
accuracy to which the state variables can be determined from the data types.

The statement to be proved here is that unobservable states exist if the
state equation and data types possess certain homogeneity properties. These
properties occur naturally in many problems as follows: the state variables
have arbitrary units; compatibility requires that the components of the state
equation be homogeneous functions, the consequence of which is that a class
of solutions related to the reference trajectory can be given. These solu-
tions can be regarded either as distinct or as the same solution viewed with
different scales for the physical units of length, mass, and temperature. If
calibrations are excluded the data types are also homogeneous functions which
are unchanged by any change in the scale of physical units. Hence identical
data are generated by any of the trajectories mentioned above.

The homogeneity properties given below suffice for the existence of
trajectories which are indistinguishable to the data types. The corresponding

result for the linearized problem is obtained by applying Euler's theorem for
homogeneous functions to determine appropriate unobservable states.

HOMOGENEOUS FUNCTIONS

In the following, f(X) is any scalar function of the n x 1 state vector
defined on an open set, S, in Xx. Homogeneous functions are usually defined
as follows (ref. 15, p. 134).

Definition. f£(X) is homogeneous of degree p on S provided
£0X) = APE) (c1)

for all x in S and all real X such that AX 1is in S.

It is necessary to generalize this definition in order to study homogeneity
properties related to scale changes in physical units.

Definition. £(X) 1s homogeneous of degree p for the integers
{Ji, - . ., Jp} provided
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F(AX) = APEO)

where

A= [‘xJi \] c2)

for all X in S and all real X such that AX is in S.

The integers in this definition can be positive, negative, or zero. The
definition (C2) includes (Cl) as a special case.

INDISTINGUISHABLE TRAJECTORIES

In the following, {mj(X), i =1, . . ., k} are the data types, and the
state equation is

X(t) = F(X(t)) (6)

The data types and the components of f are all assumed defined in an open
set, S, in X and to have continuous partial derivatives.

Two solutions of the state equation {X;(t), Xp(t), ty <t < tg} are
indistinguishable provided they generate identical data; that is, provided

m; (X1 (1)) = my(X2(t)) i=1, ...,k tg <t<tg (C3)

Indistinguishable trajectories can arise as follows. Let
{Xg(t), to < t < tp} be any solution of (6).

If there exists a set of integers {J;, . . ., J,} such that
(1) fX) = AT (X
(C4)
(2) mi(AX) = myj(X); i=1, .. .,k

(where A = [\XJ&-\]), for all X and S and all real A such that AX

is in S then

¥(t) AXo (t) to St < tg (C5)

is a solution of (6) for any allowed A and all such solutions are
indistinguishable.
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The conditions of (C4) require the components of f to be homogeneous,
respectively, of degree J., . . ., J, and the data types to be homogeneous
of degree zero, all for thée same set of integers. As discussed in the text,
such integers occur naturally if we let {J;} be the integer powers to which
any single physical unit (e.g., meter) other than the unit of time appears in
the state variables, and if the data types exclude calibrations.

That (C5) defines solutions of the state equation follows from the first
condition of (C4)

P(t) = MXg(t) = AE(Xo (1)) = F(AXo (D)) = E(w(t))

That these solutions are indistinguishable follows from the second condition
in (C4).

The corresponding result for the linearized problem is obtained by
applying Euler's theorem for homogeneous functions to show that the conditions
in (C4) are sufficient to define unobservable states; that is, initial states,
€0, which define linearized trajectories {&(t, ty)&y; ty < t < tgl} on which
the linearized data types, Vm{@(t, ts)&o are zero at all times.

EULER'S THEOREM

For the usual definition of homogeneous functions, (Cl), Euler's theorem
states (ref. 15, p. 134):

If f(x) is homogeneous of degree p and differentiable at X, then
T
VE(x) X = pf(X) (C6)

The proof is accomplished by taking the derivative of both sides of (Cl) with
respect to A and evaluating at A = 1. The validity of these steps is
assured by the differentiability of f(x).

Some difficulties of basic definition must be overcome before an
appropriately modified Euler theorem for generalized homogeneity can be given.
The fundamental notions of analysis involved in (C6) - neighborhoods, open
sets, continuity, and differentiability (ref. 15) - are ordinarily defined on
the assumption that an absolute value, |X| is defined on X. However, |X]| is
undefined here owing to the arbitrary units permitted the state variables in

this paper.

To bypass these difficulties a norm lIXllis now assumed defined on X and
then the usual definitions of analysis are generalized by replacing ]Xl with
| X | wherever necessary. In particular, the appropriate generalization of
differentiability is (e.g., ref. 16, p. 172):
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A scalar function, f(X), is Frechet-differentiable at X provided that
for every h in yx there exists a function, df(X; h), such that

lim ‘ £(x + h) - ”f}(l’fl) - df(x;h) ] =0 c7)
lhil-0
If f(X) is Frechet-differentiable then (ref. 16)
T
df(x;h) = f(x) 'h (C8)

and the usual chain rule applies.

The norm, X, can be any quadratic form
IXI = /XTMX

where M 1is, numerically, positive definite. Nothing is specified about M
other than its existence, but it may be noted that if £(X) is continuous,
differentiable, etc., for one such norm, the same is true for all such norms.
For example, the matrix PAI was used in the text when the elements of X
were interpreted as state estimation errors, X. The introduction of lIXIl is
merely a convenience and nothing is actually added, topologically, to the
context by its introduction.

A modified Euler theorem can now be given:

If f(X) is homogeneous of degree p for the integers {Jj, . . ., Jn}
and Frechet-differentiable at X then

vE(X)Te = pf(X)

where
e = ]x (€9)

The proof is again obtained by taking the derivative of both sides of (C2)
with respect to A and evaluating at A = 1. The validity of these steps is
assured by the assumed Frechet-differentiability of £(X).

SUFFICIENT CONDITIONS FOR UNOBSERVABLE STATES

In the following {Xp(t), tyo < t < tg} is the reference trajectory, and
{mj(X), i =1, . . ., k} and the components of f£(X) are all assumed defined
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with continuous partials on an open set S in X. Continuous partials are
sufficient to insure Frechet-differentiability.

If there is a set of integers {J;, . . ., Jp} for which
(1) fX) = Af(X)
(c10)
(2) m; (AX) = m3(X) i=1, .. .,k

for all X in S and all real X such that AX is in S, then the

state
€0 = [4H_]XA(to) (C11)
is unobservable.
To prove this, let fi, . . ., f; be the components of f and observe that

the first condition in (Cl0) can be written as
£ (AX) = AJif. (X); i=1 n
1 1 2 3 . . >

Apply Euler's theorem (C9) to these components to obtain

ve; ()T E J3 J X = [ Ji\]f(x) (C12)
| -
For convenience, define
E(t) = [Ji JXA(t) (C13)

and evaluate (C12) on the reference trajectory, {Xp(t), tog <t < tF}

v%T E(t) = [‘Ji ‘]f(XA(t)) - [‘Ji ;]XA(t) = E(t)

- Xa(t)
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Thus, £(t) satisfies the linearized state equation, whence
g(t) = o(t, to)&(to) (C14)

Next, apply Euler's theorem to the data types, which are homogeneous of degree
zero for the integers {J;, . . ., Jn}.

Vmi(X)T[Ji]X=O i=1, ...,k
Evaluating this on the reference trajectory, obtain
vm; (Xa (8) Te(t) = hy () Te(te) =0 i=1, . . ., k; to <t<tg (C15)

This result gives &(tg) as an unobservable state. As usual the symbol hj(t)
refers to oT(t, tgy)Vmi(Xa(t)).
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APPENDIX D
EXAMPLE - UNACCELERATED MOTION

The discussion of observability is illustrated in the simple example of
this section. An unaccelerated particle is under observation from an
inertially fixed radar station measuring range. Assume an inertial coordinate

frame with origin at the station.

An unaccelerated particle moves in a straight line with constant velocity
so that its motion is given by

R(t) = Ry + Vgt
} 0<t<w (D1)
V(t)

1]
<
@]

where Ry, V, are the unknown initial position and velocity of the particle.

The measurements are samplings of the phase shift between transmitted and
received signals, which can be represented as the ratio

m(t) = |R(t)|/A (D2)

where A 1is the radar wavelength.

The state is a list of all independent quantities required to define (D1)
and (D2)

A
X(t) = | R(Y) (D3)
V(t)

and contains seven independent variables. The object is to estimate the
initial state, Xg, of the system.

OBSERVABLE PARAMETER SPACE

In this problem the general solution of the state equation is already
known and linear, so the data type can be given directly in terms of the
unknown initial state

m(t) = |Ry + Vot]/A
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The measurement costate is the gradient of m(t) with respect to the variables
of Xo

£y (R2 ST G242

(-1/8) (Ry + 2Rg¥Vot + V)
h(t) = ———— Ro + Vot (D4)
AMR(E) ] . R
Rot + V,t2

where R, Ry, Vo, are magnitudes of the vectors R, Ry, and V_, and the
superscript (") indicates quantities evaluted on the reference initial state,
Xo, which is assumed calculated from some initial set of measurements.

The observable parameter space is the space spanned by the measurement
costate during the interval of observation which is taken here as

Hy = L{h(t) , 0 <t < o}

If the measurement costate is given analytically, as in this example, then a
basis of JG; can be obtained by expanding h(t) in the form

h(t) = ayj(t)h; + . . . + ak(t)hk 0<t<ow
that is, in a linear combination of fixed vectors, h;, hp, . . ., hy. Then
{hy, . . ., hx} is a basis of ¥, provided they are independent vectors and
provided a;(t), . . ., agx(t) are linearly independent time functions over the

interval of observation.

The measurement costate for this example (eq. (D4)) can be written as a
sum of terms in powers of t as

-Ro/ A2 —ZVgﬁo/AROVO , -1/x

Ro - t VORO - t2 VO -
- = = 2
) Ro/RoVo Vo/Ve

The superscript (°) is understood for all quantities in equation (D5). The
coefficient time functions Rg/R(t), tRoVo/AR(t), and tzvg/AR(t) have been
nondimensionalized. These functions are linearly independent on every non-
trivial time interval. Further, the three fixed vectors in (D5) are
independent so that the columns of
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Ro/A2 -2VIRo/ARYV,  -1/A
Hy = | Ro/ARo Vo/VoRo 0 (D6)
- - - 2
0 Ro/RoVo Vo/Vg
form a basis of ¥; and

dim(#p) = 3 (D7)

It may be noted that h(t) spans the same observable space regardless of the
interval of observation.

In view of (D7) only three independent parameters (functions of Xg)
describing the motion of an unaccelerated vehicle can be estimated from
measurements by an unaccelerated radar ranging station. These parameters can
be identified by noting that the columns of Hp are the gradients of

Ro
pl(XO) = T
_T-
p (X ) = _5:_2_ Rovo
27707 T RV, \ a2
A
A o
Vo

which, respectively, are the initial distance in wavelengths, the dot product
of initial position and velocity, and the speed in wavelengths per second.

UNOBSERVABLE STATES
The unobservable state space for this problem is four-dimensional since
dim(x,)= n - dim@) =7 - 3 = 4

These states are the initial states that define trajectories for which the
linearized output is zero; that is, they are the solutions of

Hix, = 0 (D8)

A basis of X, 1is given by any four independent solutions of (D8), with Hy
given in equation (D6). For example
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A 0 0 0

Xu = | Ry RgP 0 PR, (D9)

<1
(e

o Vop pro io

Here, p is the unit vector perpendicular to the plane of Ry> Vo. It can be
verified that the columns of (D9) satisfy (D8) and are independent. The first
column of (D9) is recognized as the unobservable calibration state, which is
known to occur in the present problem since the data type is not a calibra-
tion. This state can also be given easily by applying statement [13] of the
text.

The unobservable states of the linearized problem usually correspond to
indistinguishable trajectories of the original nonlinear problem. These are
solutions of the state equation for which the output time history is identical
to that of the reference solution. The calibration state corresponds to
uniform scaling of all distances, including the radar wavelength; that is,
the initial states Xé, X, generate identical output if

Xo = aXg » o arbitrary positive

The remaining three unobservable states in (D9) correspond to trajectories

for which the station wavelength and the range time-history are, separately,
equal to that of the reference trajectory. This occurs when the initial range,
Ry, initial speed, V,, and the angle, <(§o, Vo), are the same as their refer-
ence values. Three arbitrary choices define this set of indistinguishable
trajectories, two to locate the initial position vector and one to locate the
velocity vector. The last three columns of (DY) represent three analogous
independent choices for which the linearized range time-history is identical.

INITIAL MEASUREMENTS AND CALIBRATION ACCURACY

The analysis of calibration accuracy is illustrated now. The data type
of this example is not a calibration so that the problem is calibrated (com-
pared to the meter) by some initial set of measurements which are also assumed
sufficient to determine the reference trajectory and initial covariance of the
linearized estimation problem.

An example set of initial measurements is given next. This set is
intended to be simple rather than closely resemble what might occur in
practice. It just suffices to uniquely determine a reference trajectory and
contains just one calibration.

The radar wavelength is assumed determined from the relation

A = c/2nf (D10)
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and from measurements of the radar frequency f, and a determination of the
speed of light by measuring a distance d, and the time At, it takes light to
travel this distance. The first three measurements are then

m; = d = 2mAf At
m, = At (Dlla)
my = f

The measurement, m;, is the only distance calibration to appear in the initial
measurements. The calibrated distance, d, is given above_in terms of other
unknowns by using equation (D10) and the relation c¢ = d/At. In practice, the
current value of the speed of light results from many experiments similar to
{ml’ mz}.

To complete the determination of the reference initial state, the radar
is used to measure range and antenna pointing angles (right ascension and
declination) at two times, t = 0 and t = t;. The clock is assumed started
simul taneously with the first measurement. These measurements are

cos_lx/v'x2 + y2 )

my
L1

mg = sin "z/Rg

mg = RO/K

my = t (D11b)

mg = cos_l(x + th)//?x + ktl)z + (y + yt1)2

sin"'(z + 2t1)/|Rg + Voti]

Mg =

myg = |[Ro + Vot1[/2
Here, x, y, . . ., £ are the Cartesian components of Ry, V,. All these
measurements are assumed made with independent gaussian error having zero
mean and MS values, dy> » -+ +» 9g- These measurements can be defined in

terms of 10 independent unknowns
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At

t, z
Y =|-—| = <---> (D12)
A Xo

(o}

<

These are partitioned above into the state variables, Xy, of the main problem
and three additional variables, Z, which are required to define all the
initial measurements but are irrelevant to the main problem.

The costates of the a priori measurements (their gradients with respect
to Y) are given, in order, by the columns of

d/at 1 0! Lol 0 0
|
/¢ o 1| é ) ! 0 0 0
| Loy _
0 0 01 1 | Vng HZ
Hy = | -——~—=--— b %——| ————————————— =|-—
d/x 0 0] 0 0 -Ry/A2} 0 : 0 0  -Ry/A2 Hy
! (-
¢ ! Mo |0 ; M
| 1 = |
¢ : ¢ 0 ! t1M;
— 1 i _
(D13)
Here, the 3 x 3 submatrix, Mg, is
pxu = u
Mg = | ——— ‘%L .7?
2+ 52 o
where p is the unit vector perpendicular to plane of Ry, V,, and u, is

RO/RO. The matrix, M;, has the same definition except that quantities are
evaluated at time, ;.

It can be shown that Hp is nonsingular so that the 10 measurements,
my(Y), . . ., myg(Y), can be inverted to obtain a unique solugion for Y in
terms of the data. This contains the required solution for X5. The initial

covariance, Pp, associated with the estimate, X,, is given by the formula
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PAI - (E[ii ])—1 - HX[§A1 - QAHEI;1HZQ;1}H1 (D14)

where quantities are evaluated at Y and Qq 1is the diagonal matrix containing

Qs = -+ 9yq- The calibration accuracy is then given from
_(.T -1 -1
iz T (gozPA Eoz>
where & is the calibration state from equation (D9). (Altermnatively, M7

can be computed from eq. (54).) Omitting lengthy but routine algebra, the
calibration accuracy is

4 q, 43

sy = oot =5t o (D15)
il 32 A2 32
It is recognized that u is the accuracy with which X can be estimated

from the measurements {my, m,, m3}. This accuracy is poorer than that of the
actual calibration, q;/dZ.

The equation for the gradient of the meter stick of the problem is

1/A

VAT T
Xy - M2ifA for T\ O
0

This does not uniquely specify 1%*(Xy), but any length function of X, which
has this gradient can be taken as the meter stick; for example

1*(X) = x (D16)

In this example, the meter stick has a natural interpretation as the radar
wavelength. If the speed of light is determined from redundant experiments of
the same kind as {m;, mp} then the meter stick is again X and the calibra-
tion accuracy is again the accuracy with which A can be estimated from these
initial experiments. However, if the problem is a more realistic one (e.g.,
that of estimating particle motion in a gravitational field from an earth-
based radar range station), then the meter stick will not generally be A nor
have a simple physical interpretation.

The estimation of the particle trajectory in this example is, at best, a
process of comparing all distances to the radar wavelength, and the accuracy
to which any distance can be estimated is limited by the accuracy with which
the wavelength is estimated initially. There are, however, unobservable
states in addition to the calibration state, so that a lower bound on
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estimation accuracy, due to all the unobservable states, occurs and is poorer
than My This lower bound can be determined by separating P, into two
parts associated, respectively, with the observable and unobservable states.
If desired, this separation can be carried out by the procedure described in
the text (eq. (30)), and then a lower bound on the accuracy to which the state
variables can be estimated from the range data is given by the diagonal
elements of the part associated with the unobservable states.
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